5 resultados para Antiradical capacity

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a general equilibrium framework where the marginal cost of extraction from several deposits of an exhaustible resource is constant in terms of an inexhaustible perfect substitute and differs between deposits. the instantaneous rate of production form the inexhaustible resource is subject to a capacity constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of the “capability approach” to human rights, this paper argues that adults who facilitate participatory planning and design with children and youth have an ethical obligation to foster young people’s capacities for active democratic citizenship. Practitioners often worry, justifiably, that if young people fail to see their ideas realized, they may become disillusioned and alienated from political life. Based on the experience of the Growing Up in Cities program of UNESCO, four rules of good practice are distilled which can help promote young people’s belief in the value of collective action, regardless of the challenges that the full implementation of their ideas may face.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic liver failure leads to hyperammonemia and consequently increased brain ammonia concentrations, resulting in hepatic encephalopathy. When the liver fails to regulate ammonia concentrations, the brain, devoid of a urea cycle, relies solely on the amidation of glutamate to glutamine through glutamine synthetase, to efficiently clear ammonia. Surprisingly, under hyperammonemic conditions, the brain is not capable of increasing its capacity to remove ammonia, which even decreases in some regions of the brain. This non-induction of glutamine synthetase in astrocytes could result from possible limiting substrates or cofactors for the enzyme, or an indirect effect of ammonia on glutamine synthetase expression. In addition, there is evidence that nitration of the enzyme resulting from exposure to nitric oxide could also be implicated. The present review summarizes these possible factors involved in limiting the increase in capacity of glutamine synthetase in brain, in chronic liver failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: It has been proposed that, in acute liver failure, skeletal muscle adapts to become the principle organ responsible for removal of blood-borne ammonia by increasing glutamine synthesis, a reaction that is catalyzed by the cytosolic ATP-dependent enzyme glutamine synthetase. To address this issue, glutamine synthetase expression and activities were measured in skeletal muscle of rats with acute liver failure resulting from hepatic devascularization. METHODS: Glutamine synthetase protein and gene expression were investigated using immunoblotting and semi-quantitative RT-PCR analysis. Glutamine synthetase activity and glutamine de novo synthesis were measured using, respectively, a standard enzymatic assay and [13C]-nuclear magnetic resonance spectroscopy. RESULTS: Glutamine synthetase protein (but not gene) expression and enzyme activities were significantly up-regulated leading to increased de novo synthesis of glutamine and increased skeletal muscle capacity for ammonia removal in acute liver failure. In contrast to skeletal muscle, expression and activities of glutamine synthetase in the brain were significantly decreased. CONCLUSIONS: These findings demonstrate that skeletal muscle adapts, through a rapid induction of glutamine synthetase, to increase its capacity for removal of blood-borne ammonia in acute liver failure. Maintenance of muscle mass together with the development of agents with the capacity to stimulate muscle glutamine synthetase could provide effective ammonia-lowering strategies in this disorder.