2 resultados para Algoritmo de Prim
em Université de Montréal, Canada
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
Resumo:
En la actualidad, el uso de las tecnologías ha sido primordial para el avance de las sociedades, estas han permitido que personas sin conocimientos informáticos o usuarios llamados “no expertos” se interesen en su uso, razón por la cual los investigadores científicos se han visto en la necesidad de producir estudios que permitan la adaptación de sistemas, a la problemática existente dentro del ámbito informático. Una necesidad recurrente de todo usuario de un sistema es la gestión de la información, la cual se puede administrar por medio de una base de datos y lenguaje específico, como lo es el SQL (Structured Query Language), pero esto obliga al usuario sin conocimientos a acudir a un especialista para su diseño y construcción, lo cual se ve reflejado en costos y métodos complejos, entonces se plantea una pregunta ¿qué hacer cuando los proyectos son pequeñas y los recursos y procesos son limitados? Teniendo como base la investigación realizada por la universidad de Washington[39], donde sintetizan sentencias SQL a partir de ejemplos de entrada y salida, se pretende con esta memoria automatizar el proceso y aplicar una técnica diferente de aprendizaje, para lo cual utiliza una aproximación evolucionista, donde la aplicación de un algoritmo genético adaptado origina sentencias SQL válidas que responden a las condiciones establecidas por los ejemplos de entrada y salida dados por el usuario. Se obtuvo como resultado de la aproximación, una herramienta denominada EvoSQL que fue validada en este estudio. Sobre los 28 ejercicios empleados por la investigación [39], 23 de los cuales se obtuvieron resultados perfectos y 5 ejercicios sin éxito, esto representa un 82.1% de efectividad. Esta efectividad es superior en un 10.7% al establecido por la herramienta desarrollada en [39] SQLSynthesizer y 75% más alto que la herramienta siguiente más próxima Query by Output QBO[31]. El promedio obtenido en la ejecución de cada ejercicio fue de 3 minutos y 11 segundos, este tiempo es superior al establecido por SQLSynthesizer; sin embargo, en la medida un algoritmo genético supone la existencia de fases que amplían los rangos de tiempos, por lo cual el tiempo obtenido es aceptable con relación a las aplicaciones de este tipo. En conclusión y según lo anteriormente expuesto, se obtuvo una herramienta automática con una aproximación evolucionista, con buenos resultados y un proceso simple para el usuario “no experto”.