33 resultados para Adaptive learning, Sticky information, Inflation dynamics, Nonlinearities

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use identification-robust methods to assess the empirical adequacy of a New Keynesian Phillips Curve (NKPC) equation. We focus on the Gali and Gertler’s (1999) specification, on both U.S. and Canadian data. Two variants of the model are studied: one based on a rationalexpectations assumption, and a modification to the latter which consists in using survey data on inflation expectations. The results based on these two specifications exhibit sharp differences concerning: (i) identification difficulties, (ii) backward-looking behavior, and (ii) the frequency of price adjustments. Overall, we find that there is some support for the hybrid NKPC for the U.S., whereas the model is not suited to Canada. Our findings underscore the need for employing identificationrobust inference methods in the estimation of expectations-based dynamic macroeconomic relations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the macroeconomic implications of sectoral heterogeneity and, in particular, heterogeneity in price setting, through the lens of a highly disaggregated multi-sector model. The model incorporates several realistic features and is estimated using a mix of aggregate and sectoral U.S. data. The frequencies of price changes implied by our estimates are remarkably consistent with those reported in micro-based studies, especially for non-sale prices. The model is used to study (i) the contribution of sectoral characteristics to the observed cross sectional heterogeneity in sectoral output and inflation responses to a monetary policy shock, (ii) the implications of sectoral price rigidity for aggregate output and inflation dynamics and for cost pass-through, and (iii) the role of sectoral shocks in explaining sectoral prices and quantities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La thèse comporte trois essais en microéconomie appliquée. En utilisant des modèles d’apprentissage (learning) et d’externalité de réseau, elle étudie le comportement des agents économiques dans différentes situations. Le premier essai de la thèse se penche sur la question de l’utilisation des ressources naturelles en situation d’incertitude et d’apprentissage (learning). Plusieurs auteurs ont abordé le sujet, mais ici, nous étudions un modèle d’apprentissage dans lequel les agents qui consomment la ressource ne formulent pas les mêmes croyances a priori. Le deuxième essai aborde le problème générique auquel fait face, par exemple, un fonds de recherche désirant choisir les meilleurs parmi plusieurs chercheurs de différentes générations et de différentes expériences. Le troisième essai étudie un modèle particulier d’organisation d’entreprise dénommé le marketing multiniveau (multi-level marketing). Le premier chapitre est intitulé "Renewable Resource Consumption in a Learning Environment with Heterogeneous beliefs". Nous y avons utilisé un modèle d’apprentissage avec croyances hétérogènes pour étudier l’exploitation d’une ressource naturelle en situation d’incertitude. Il faut distinguer ici deux types d’apprentissage : le adaptive learning et le learning proprement dit. Ces deux termes ont été empruntés à Koulovatianos et al (2009). Nous avons montré que, en comparaison avec le adaptive learning, le learning a un impact négatif sur la consommation totale par tous les exploitants de la ressource. Mais individuellement certains exploitants peuvent consommer plus la ressource en learning qu’en adaptive learning. En effet, en learning, les consommateurs font face à deux types d’incitations à ne pas consommer la ressource (et donc à investir) : l’incitation propre qui a toujours un effet négatif sur la consommation de la ressource et l’incitation hétérogène dont l’effet peut être positif ou négatif. L’effet global du learning sur la consommation individuelle dépend donc du signe et de l’ampleur de l’incitation hétérogène. Par ailleurs, en utilisant les variations absolues et relatives de la consommation suite à un changement des croyances, il ressort que les exploitants ont tendance à converger vers une décision commune. Le second chapitre est intitulé "A Perpetual Search for Talent across Overlapping Generations". Avec un modèle dynamique à générations imbriquées, nous avons étudié iv comment un Fonds de recherche devra procéder pour sélectionner les meilleurs chercheurs à financer. Les chercheurs n’ont pas la même "ancienneté" dans l’activité de recherche. Pour une décision optimale, le Fonds de recherche doit se baser à la fois sur l’ancienneté et les travaux passés des chercheurs ayant soumis une demande de subvention de recherche. Il doit être plus favorable aux jeunes chercheurs quant aux exigences à satisfaire pour être financé. Ce travail est également une contribution à l’analyse des Bandit Problems. Ici, au lieu de tenter de calculer un indice, nous proposons de classer et d’éliminer progressivement les chercheurs en les comparant deux à deux. Le troisième chapitre est intitulé "Paradox about the Multi-Level Marketing (MLM)". Depuis quelques décennies, on rencontre de plus en plus une forme particulière d’entreprises dans lesquelles le produit est commercialisé par le biais de distributeurs. Chaque distributeur peut vendre le produit et/ou recruter d’autres distributeurs pour l’entreprise. Il réalise des profits sur ses propres ventes et reçoit aussi des commissions sur la vente des distributeurs qu’il aura recrutés. Il s’agit du marketing multi-niveau (multi-level marketing, MLM). La structure de ces types d’entreprise est souvent qualifiée par certaines critiques de système pyramidal, d’escroquerie et donc insoutenable. Mais les promoteurs des marketing multi-niveau rejettent ces allégations en avançant que le but des MLMs est de vendre et non de recruter. Les gains et les règles de jeu sont tels que les distributeurs ont plus incitation à vendre le produit qu’à recruter. Toutefois, si cette argumentation des promoteurs de MLMs est valide, un paradoxe apparaît. Pourquoi un distributeur qui désire vraiment vendre le produit et réaliser un gain recruterait-il d’autres individus qui viendront opérer sur le même marché que lui? Comment comprendre le fait qu’un agent puisse recruter des personnes qui pourraient devenir ses concurrents, alors qu’il est déjà établi que tout entrepreneur évite et même combat la concurrence. C’est à ce type de question que s’intéresse ce chapitre. Pour expliquer ce paradoxe, nous avons utilisé la structure intrinsèque des organisations MLM. En réalité, pour être capable de bien vendre, le distributeur devra recruter. Les commissions perçues avec le recrutement donnent un pouvoir de vente en ce sens qu’elles permettent au recruteur d’être capable de proposer un prix compétitif pour le produit qu’il désire vendre. Par ailleurs, les MLMs ont une structure semblable à celle des multi-sided markets au sens de Rochet et Tirole (2003, 2006) et Weyl (2010). Le recrutement a un effet externe sur la vente et la vente a un effet externe sur le recrutement, et tout cela est géré par le promoteur de l’organisation. Ainsi, si le promoteur ne tient pas compte de ces externalités dans la fixation des différentes commissions, les agents peuvent se tourner plus ou moins vers le recrutement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions. Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine. Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage. Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the dynamics of wages and workers' mobility within firms with a hierarchical structure of job levels. The theoretical model proposed by Gibbons and Waldman (1999), that combines the notions of human capital accumulation, job rank assignments based on comparative advantage and learning about workers' abilities, is implemented empirically to measure the importance of these elements in explaining the wage policy of firms. Survey data from the GSOEP (German Socio-Economic Panel) are used to draw conclusions on the common features characterizing the wage policy of firms from a large sample of firms. The GSOEP survey also provides information on the worker's rank within his firm which is usually not available in other surveys. The results are consistent with non-random selection of workers onto the rungs of a job ladder. There is no direct evidence of learning about workers' unobserved abilities but the analysis reveals that unmeasured ability is an important factor driving wage dynamics. Finally, job rank effects remain significant even after controlling for measured and unmeasured characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a review of the stabilization attempts in Argentina, Brazil, and Israel during the 1980’s. Earlier research is summarized and complemented with additional sources of contemporaneous information and a detailed analysis of institutional features. The examination of these episodes underscores the strong economic and empirical relationship between the governments’ fiscal policy and the rate of inflation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a model of money demand where the opportunity cost of holding money is subject to regime changes. The regimes are fully characterized by the mean and variance of inflation and are assumed to be the result of alternative government policies. Agents are unable to directly observe whether government actions are indeed consistent with the inflation rate targeted as part of a stabilization program but can construct probability inferences on the basis of available observations of inflation and money growth. Government announcements are assumed to provide agents with additional, possibly truthful information regarding the regime. This specification is estimated and tested using data from the Israeli and Argentine high inflation periods. Results indicate the successful stabilization program implemented in Israel in July 1985 was more credible than either the earlier Israeli attempt in November 1984 or the Argentine programs. Government’s signaling might substantially simplify the inference problem and increase the speed of learning on the part of the agents. However, under certain conditions, it might increase the volatility of inflation. After the introduction of an inflation stabilization plan, the welfare gains from a temporary increase in real balances might be high enough to induce agents to raise their real balances in the short-term, even if they are uncertain about the nature of government policy and the eventual outcome of the stabilization attempt. Statistically, the model restrictions cannot be rejected at the 1% significance level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper constructs and estimates a sticky-price, Dynamic Stochastic General Equilibrium model with heterogenous production sectors. Sectors differ in price stickiness, capital-adjustment costs and production technology, and use output from each other as material and investment inputs following an Input-Output Matrix and Capital Flow Table that represent the U.S. economy. By relaxing the standard assumption of symmetry, this model allows different sectoral dynamics in response to monetary policy shocks. The model is estimated by Simulated Method of Moments using sectoral and aggregate U.S. time series. Results indicate 1) substantial heterogeneity in price stickiness across sectors, with quantitatively larger differences between services and goods than previously found in micro studies that focus on final goods alone, 2) a strong sensitivity to monetary policy shocks on the part of construction and durable manufacturing, and 3) similar quantitative predictions at the aggregate level by the multi-sector model and a standard model that assumes symmetry across sectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la modélisation des fonctions comportant plusieurs facteurs de variation. Nous sommes particulièrement intéressés par ce genre de données car nous espérons qu'un agent intelligent sera en mesure d'apprendre à les modéliser automatiquement; l'hypothèse est que les architectures profondes sont mieux adaptées pour les modéliser. Les travaux de Hinton (2006) furent une véritable percée, car l'idée d'utiliser un algorithme d'apprentissage non-supervisé, les machines de Boltzmann restreintes, pour l'initialisation des poids d'un réseau de neurones supervisé a été cruciale pour entraîner l'architecture profonde la plus populaire, soit les réseaux de neurones artificiels avec des poids totalement connectés. Cette idée a été reprise et reproduite avec succès dans plusieurs contextes et avec une variété de modèles. Dans le cadre de cette thèse, nous considérons les architectures profondes comme des biais inductifs. Ces biais sont représentés non seulement par les modèles eux-mêmes, mais aussi par les méthodes d'entraînement qui sont souvent utilisés en conjonction avec ceux-ci. Nous désirons définir les raisons pour lesquelles cette classe de fonctions généralise bien, les situations auxquelles ces fonctions pourront être appliquées, ainsi que les descriptions qualitatives de telles fonctions. L'objectif de cette thèse est d'obtenir une meilleure compréhension du succès des architectures profondes. Dans le premier article, nous testons la concordance entre nos intuitions---que les réseaux profonds sont nécessaires pour mieux apprendre avec des données comportant plusieurs facteurs de variation---et les résultats empiriques. Le second article est une étude approfondie de la question: pourquoi l'apprentissage non-supervisé aide à mieux généraliser dans un réseau profond? Nous explorons et évaluons plusieurs hypothèses tentant d'élucider le fonctionnement de ces modèles. Finalement, le troisième article cherche à définir de façon qualitative les fonctions modélisées par un réseau profond. Ces visualisations facilitent l'interprétation des représentations et invariances modélisées par une architecture profonde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’approche d’apprentissage par problèmes (APP) a vu le jour, dans sa forme contemporaine, à la Faculté de médecine de l’Université MacMaster en Ontario (Canada) à la fin des années 1960. Très rapidement cette nouvelle approche pédagogique active, centrée sur l’étudiant et basée sur les problèmes biomédicaux, va être adoptée par de nombreuses facultés de médecine de par le monde et gagner d’autres disciplines. Cependant, malgré ce succès apparent, l’APP est aussi une approche controversée, notamment en éducation médicale, où elle a été accusée de favoriser un apprentissage superficiel. Par ailleurs, les étudiants formés par cette approche réussiraient moins bien que les autres aux tests évaluant l’acquisition des concepts scientifiques de base, et il n’a jamais été prouvé que les médecins formés par l’APP seraient meilleurs que les autres. Pour mieux comprendre ces résultats, la présente recherche a voulu explorer l’apprentissage de ces concepts scientifiques, en tant que processus de construction, chez des étudiants formés par l’APP, à la Faculté de médecine de l’Université de Montréal, en nous appuyant sur le cadre théorique socioconstructivisme de Vygotski. Pour cet auteur, la formation des concepts est un processus complexe de construction de sens, en plusieurs étapes, qui ne peut se concevoir que dans le cadre d’une résolution de problèmes. Nous avons réalisé une étude de cas, multicas, intrasite, les cas étant deux groupes de neuf étudiants en médecine avec leur tuteur, que nous avons suivi pendant une session complète de la mi-novembre à la mi-décembre 2007. Deux grands objectifs étaient poursuivis: premièrement, fournir des analyses détaillées et des matériaux réflectifs et théoriques susceptibles de rendre compte du phénomène de construction des concepts scientifiques de base par des étudiants en médecine dans le contexte de l’APP. Deuxièmement, explorer, les approches de travail personnel des étudiants, lors de la phase de travail individuel, afin de répondre à la question de recherche suivante : Comment la dynamique pédagogique de l’APP en médecine permet-elle de rendre compte de l’apprentissage des concepts scientifiques de base? Il s’agissait d’une étude qualitative et les données ont été recueillies par différents moyens : observation non participante et enregistrement vidéo des tutoriaux d’APP, interview semi-structuré des étudiants, discussion avec les tuteurs et consultation de leurs manuels, puis traitées par diverses opérations: transcription des enregistrements, regroupement, classification. L’analyse a porté sur des collections de verbatim issus des transcriptions, sur le suivi de la construction des concepts à travers le temps et les sessions, sur le role du tuteur pour aider au développement de ces concepts Les analyses suggèrent que l’approche d’APP est, en général, bien accueillie, et les débats sont soutenus, avec en moyenne entre trois et quatre échanges par minute. Par rapport au premier objectif, nous avons effectivement fourni des explications détaillées sur la dynamique de construction des concepts qui s'étend lors des trois phases de l'APP, à savoir la phase aller, la phase de recherche individuelle et la phase retour. Pour chaque cas étudié, nous avons mis en évidence les représentations conceptuelles initiales à la phase aller, co-constructions des étudiants, sous la guidance du tuteur et nous avons suivi la transformation de ces concepts spontanés naïfs, lors des discussions de la phase retour. Le choix du cadre théorique socio constructiviste de Vygotski nous a permis de réfléchir sur le rôle de médiation joué par les composantes du système interactif de l'APP, que nous avons considéré comme une zone proximale de développement (ZPD) au sens élargi, qui sont le problème, le tuteur, l'étudiant et ses pairs, les ressources, notamment l'artefact graphique carte conceptuelle utilisée de façon intensive lors des tutoriaux aller et retour, pour arriver à la construction des concepts scientifiques. Notre recherche a montré qu'en revenant de leurs recherches, les étudiants avaient trois genres de représentations conceptuelles: des concepts corrects, des concepts incomplets et des concepts erronés. Il faut donc que les concepts scientifiques théoriques soient à leur tour confrontés au problème concret, dans l'interaction sociale pour une validation des attributs qui les caractérisent. Dans cette interaction, le tuteur joue un rôle clé complexe de facilitateur, de médiateur, essentiellement par le langage. L'analyse thématique de ses interventions a permis d'en distinguer cinq types: la gestion du groupe, l'argumentation, les questions de différents types, le modelling et les conclusions. Nous avons montré le lien entre les questions du tuteur et le type de réponses des étudiants, pour recommander un meilleur équilibre entre les différents types de questions. Les étudiants, également par les échanges verbaux, mais aussi par la construction collective des cartes conceptuelles initiales et définitives, participent à une co-construction de ces concepts. L'analyse de leurs interactions nous a permis de relever différentes fonctions du langage, pour souligner l'intérêt des interactions argumentatives, marqueurs d'un travail collaboratif en profondeur pour la co-construction des concepts Nous avons aussi montré l'intérêt des cartes conceptuelles non seulement pour visualiser les concepts, mais aussi en tant qu'artefact, outil de médiation psychique à double fonction communicative et sémiotique. Concernant le second objectif, l’exploration du travail personnel des étudiants, on constate que les étudiants de première année font un travail plus approfondi de recherche, et utilisent plus souvent des stratégies de lecture plus efficaces que leurs collègues de deuxième année. Ceux-ci se contentent, en général, des ouvrages de référence, font de simples lectures et s’appuient beaucoup sur les résumés faits par leurs prédécesseurs. Le recours aux ouvrages de référence essentiellement comme source d'information apporte une certaine pauvreté au débat à la phase retour avec peu d'échanges de type argumentatif, témoins d'un travail profond. Ainsi donc, par tout ce soutien qu'elle permet d'apporter aux étudiants pour la construction de leurs connaissances, pour le type d'apprentissage qu'elle offre, l’APP reste une approche unique, digne d’intérêt. Cependant, elle nécessite d'être améliorée par des interventions au niveau du tuteur et des étudiants.