8 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
em Université de Montréal, Canada
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
La mémoire n’est pas un processus unitaire et est souvent divisée en deux catégories majeures: la mémoire déclarative (pour les faits) et procédurale (pour les habitudes et habiletés motrices). Pour perdurer, une trace mnésique doit passer par la consolidation, un processus par lequel elle devient plus robuste et moins susceptible à l’interférence. Le sommeil est connu comme jouant un rôle clé pour permettre le processus de consolidation, particulièrement pour la mémoire déclarative. Depuis plusieurs années cependant, son rôle est aussi reconnu pour la mémoire procédurale. Il est par contre intéressant de noter que ce ne sont pas tous les types de mémoire procédurale qui requiert le sommeil afin d’être consolidée. Entre autres, le sommeil semble nécessaire pour consolider un apprentissage de séquences motrices (s’apparentant à l’apprentissage du piano), mais pas un apprentissage d’adaptation visuomotrice (tel qu’apprendre à rouler à bicyclette). Parallèlement, l’apprentissage à long terme de ces deux types d’habiletés semble également sous-tendu par des circuits neuronaux distincts; c’est-à-dire un réseau cortico-striatal et cortico-cérébelleux respectivement. Toutefois, l’implication de ces réseaux dans le processus de consolidation comme tel demeure incertain. Le but de cette thèse est donc de mieux comprendre le rôle du sommeil, en contrôlant pour le simple passage du temps, dans la consolidation de ces deux types d’apprentissage, à l’aide de l’imagerie par résonnance magnétique fonctionnelle et d’analyses de connectivité cérébrale. Nos résultats comportementaux supportent l’idée que seul l’apprentissage séquentiel requiert le sommeil pour déclencher le processus de consolidation. Nous suggérons de plus que le putamen est fortement associé à ce processus. En revanche, les performances d’un apprentissage visuomoteur s’améliorent indépendamment du sommeil et sont de plus corrélées à une plus grande activation du cervelet. Finalement, en explorant l’effet du sommeil sur la connectivité cérébrale, nos résultats démontrent qu’en fait, un système cortico-striatal semble être plus intégré suite à la consolidation. C’est-à-dire que l’interaction au sein des régions du système est plus forte lorsque la consolidation a eu lieu, après une nuit de sommeil. En opposition, le simple passage du temps semble nuire à l’intégration de ce réseau cortico-striatal. En somme, nous avons pu élargir les connaissances quant au rôle du sommeil pour la mémoire procédurale, notamment en démontrant que ce ne sont pas tous les types d’apprentissages qui requièrent le sommeil pour amorcer le processus de consolidation. D’ailleurs, nous avons également démontré que cette dissociation de l’effet du sommeil est également reflétée par l’implication de deux réseaux cérébraux distincts. À savoir, un réseau cortico-striatal et un réseau cortico-cérébelleux pour la consolidation respective de l’apprentissage de séquence et d’adaptation visuomotrice. Enfin, nous suggérons que la consolidation durant le sommeil permet de protéger et favoriser une meilleure cohésion au sein du réseau cortico-striatal associé à notre tâche; un phénomène qui, s’il est retrouvé avec d’autres types d’apprentissage, pourrait être considéré comme un nouveau marqueur de la consolidation.
Resumo:
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.
Resumo:
Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.
Resumo:
Understanding how stem and progenitor cells choose between alternative cell fates is a major challenge in developmental biology. Efforts to tackle this problem have been hampered by the scarcity of markers that can be used to predict cell division outcomes. Here we present a computational method, based on algorithmic information theory, to analyze dynamic features of living cells over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display characteristic phenotypes before undergoing mitosis that could foretell their fate. We predicted whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or whether they will produce two photoreceptors or another combination of offspring with 87% accuracy. Our implementation can segment, track and generate predictions for 40 cells simultaneously on a standard computer at 5 min per frame. This method could be used to isolate cell populations with specific developmental potential, enabling previously impossible investigations.
Resumo:
Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.
Resumo:
Le but de cette thèse est d'étudier les corrélats comportementaux et neuronaux du transfert inter-linguistique (TIL) dans l'apprentissage d’une langue seconde (L2). Compte tenu de nos connaissances sur l'influence de la distance linguistique sur le TIL (Paradis, 1987, 2004; Odlin, 1989, 2004, 2005; Gollan, 2005; Ringbom, 2007), nous avons examiné l'effet de facilitation de la similarité phonologique à l’aide de la résonance magnétique fonctionnelle entre des langues linguistiquement proches (espagnol-français) et des langues linguistiquement éloignées (persan-français). L'étude I rapporte les résultats obtenus pour des langues linguistiquement proches (espagnol-français), alors que l'étude II porte sur des langues linguistiquement éloignées (persan-français). Puis, les changements de connectivité fonctionnelle dans le réseau langagier (Price, 2010) et dans le réseau de contrôle supplémentaire impliqué dans le traitement d’une langue seconde (Abutalebi & Green, 2007) lors de l’apprentissage d’une langue linguistiquement éloignée (persan-français) sont rapportés dans l’étude III. Les résultats des analyses d’IRMF suivant le modèle linéaire général chez les bilingues de langues linguistiquement proches (français-espagnol) montrent que le traitement des mots phonologiquement similaires dans les deux langues (cognates et clangs) compte sur un réseau neuronal partagé par la langue maternelle (L1) et la L2, tandis que le traitement des mots phonologiquement éloignés (non-clang-non-cognates) active des structures impliquées dans le traitement de la mémoire de travail et d'attention. Toutefois, chez les personnes bilingues de L1-L2 linguistiquement éloignées (français-persan), même les mots phonologiquement similaires à travers les langues (cognates et clangs) activent des régions connues pour être impliquées dans l'attention et le contrôle cognitif. Par ailleurs, les mots phonologiquement éloignés (non-clang-non-cognates) activent des régions usuellement associées à la mémoire de travail et aux fonctions exécutives. Ainsi, le facteur de distance inter-linguistique entre L1 et L2 module la charge cognitive sur la base du degré de similarité phonologiques entres les items en L1 et L2. Des structures soutenant les processus impliqués dans le traitement exécutif sont recrutées afin de compenser pour des demandes cognitives. Lorsque la compétence linguistique en L2 augmente et que les tâches linguistiques exigent ainsi moins d’effort, la demande pour les ressources cognitives diminue. Tel que déjà rapporté (Majerus, et al, 2008; Prat, et al, 2007; Veroude, et al, 2010; Dodel, et al, 2005; Coynel, et al ., 2009), les résultats des analyses de connectivité fonctionnelle montrent qu’après l’entraînement la valeur d'intégration (connectivité fonctionnelle) diminue puisqu’il y a moins de circulation du flux d'information. Les résultats de cette recherche contribuent à une meilleure compréhension des aspects neurocognitifs et de plasticité cérébrale du TIL ainsi que l'impact de la distance linguistique dans l'apprentissage des langues. Ces résultats ont des implications dans les stratégies d'apprentissage d’une L2, les méthodes d’enseignement d’une L2 ainsi que le développement d'approches thérapeutiques chez des patients bilingues qui souffrent de troubles langagiers.