4 resultados para Activated sludge system
em Université de Montréal, Canada
Resumo:
Streptococcus suis de type 2 est un microorganisme pathogène d’importance chez le porc. Il est la cause de différentes pathologies ayant comme caractéristique commune la méningite. C’est également un agent émergeant de zoonose : des cas cliniques humains ont récemment été rapportés en Asie. Cependant, la pathogénèse de S. suis n’est pas encore complètement élucidée. Jusqu’à présent, la réponse pro-inflammatoire initiée par S. suis n’a été étudiée qu’in vitro. L’étude du choc septique et de la méningite requiert toujours des modèles expérimentaux appropriés. Au cours de cette étude, nous avons développé un modèle in vivo d’infection chez la souris qui utilise la voie d’inoculation intra-péritonéale. Ce modèle a servi à l’étude de la réponse pro-inflammatoire associée à ce pathogène, tant au niveau systémique qu’au niveau du système nerveux central (SNC). Il nous a également permis de déterminer si la sensibilité aux infections à S. suis pouvait être influencée par des prédispositions génétiques de l’hôte. Le modèle d’infection par S. suis a été mis au point sur des souris de lignée CD1. Les résultats ont démontré une bactériémie élevée pendant les trois jours suivant l’infection. Celle-ci était accompagnée d’une libération rapide et importante de différentes cytokines pro-inflammatoires (TNF-α, IL-6, IL-12p40/p70, IFN-ɣ) et de chémokines (KC, MCP-1 and RANTES), qui ont entraîné un choc septique et la mort de 20 % des animaux. Ensuite, pour confirmer le rôle de l’inflammation sur la mortalité et pour déterminer si les caractéristiques génétiques de l’hôte pouvaient influencer la réponse inflammatoire et l’issue de la maladie, le modèle d’infection a été étendu à deux lignées murines consanguines différentes considérées comme résistante : la lignée C57BL/6 (B6), et sensible : la lignée A/J. Les résultats ont démontré une importante différence de sensibilité entre les souris A/J et les souris B6, avec un taux de mortalité atteignant 100 % à 20 h post-infection (p.i.) pour la première lignée et de seulement 16 % à 36 h p.i. pour la seconde. La quantité de bactéries dans le sang et dans les organes internes était similaire pour les deux lignées. Donc, tout comme dans la lignée CD1, la bactériémie ne semblait pas être liée à la mort des souris. La différence entre les taux de mortalité a été attribuée à un choc septique non contrôlé chez les souris A/J infectées par S. suis. Les souris A/J présentaient des taux exceptionnellement élevés de TNF-α, IL-12p40/p70, IL-1β and IFN- γ, significativement supérieurs à ceux retrouvés dans la lignée B6. Par contre, les niveaux de chémokines étaient similaires entre les lignées, ce qui suggère que leur influence est limitée dans le développement du choc septique dû à S. suis. Les souris B6 avaient une production plus élevée d’IL-10, une cytokine anti-inflammatoire, ce qui suppose que la cascade cytokinaire pro-inflammatoire était mieux contrôlée, entraînant un meilleur taux de survie. Le rôle bénéfique potentiel de l’IL-10 chez les souris infectées par S. suis a été confirmé par deux approches : d’une part en bloquant chez les souris B6 le récepteur cellulaire à l’IL-10 (IL-10R) par un anticorps monoclonal anti-IL-10R de souris et d’autre part en complémentant les souris A/J avec de l’IL-10 de souris recombinante. Les souris B6 ayant reçu le anticorps monoclonal anti-IL-10R avant d’être infectées par S. suis ont développé des signes cliniques aigus similaires à ceux observés chez les souris A/J, avec une mortalité rapide et élevée et des taux de TNF-α plus élevés que les souris infectées non traitées. Chez les souris A/J infectées par S. suis, le traitement avec l’IL-10 de souris recombinante a significativement retardé l’apparition du choc septique. Ces résultats montrent que la survie au choc septique dû à S. suis implique un contrôle très précis des mécanismes pro- et anti-inflammatoires et que la réponse anti-inflammatoire doit être activée simultanément ou très rapidement après le début de la réponse pro-inflammatoire. Grâce à ces expériences, nous avons donc fait un premier pas dans l’identification de gènes associés à la résistance envers S. suis chez l’hôte. Une des réussites les plus importantes du modèle d’infection de la souris décrit dans ce projet est le fait que les souris CD1 ayant survécu à la septicémie présentaient dès 4 jours p.i. des signes cliniques neurologiques clairs et un syndrome vestibulaire relativement similaires à ceux observés lors de méningite à S. suis chez le porc et chez l’homme. L’analyse par hybridation in situ combinée à de l’immunohistochimie des cerveaux des souris CD1 infectées a montré que la réponse inflammatoire du SNC débutait avec une augmentation significative de la transcription du Toll-like receptor (TLR)2 et du CD14 dans les microvaisseaux cérébraux et dans les plexus choroïdes, ce qui suggère que S. suis pourrait se servir de ces structures comme portes d’entrée vers le cerveau. Aussi, le NF-κB (suivi par le système rapporteur de l’activation transcriptionnelle de IκBα), le TNF-α, l’IL-1β et le MCP-1 ont été activés, principalement dans des cellules identifiées comme de la microglie et dans une moindre mesure comme des astrocytes. Cette activation a également été observée dans différentes structures du cerveau, principalement le cortex cérébral, le corps calleux, l’hippocampe, les plexus choroïdes, le thalamus, l’hypothalamus et les méninges. Partout, cette réaction pro-inflammatoire était accompagnée de zones extensives d’inflammation et de nécrose, de démyélinisation sévère et de la présence d’antigènes de S. suis dans la microglie. Nous avons mené ensuite des études in vitro pour mieux comprendre l’interaction entre S. suis et la microglie. Pour cela, nous avons infecté des cellules microgliales de souris avec la souche sauvage virulente (WT) de S. suis, ainsi qu’avec deux mutants isogéniques, un pour la capsule (CPS) et un autre pour la production d’hémolysine (suilysine). Nos résultats ont montré que la capsule était un important mécanisme de résistance à la phagocytose pour S. suis et qu’elle modulait la réponse inflammatoire, en dissimulant les composants pro-inflammatoires de la paroi bactérienne. Par contre, l’absence d’hémolysine, qui est un facteur cytotoxique potentiel, n’a pas eu d’impact majeur sur l’interaction de S. suis avec la microglie. Ces études sur les cellules microgliales ont permis de confirmer les résultats obtenus précédemment in vivo. La souche WT a induit une régulation à la hausse du TLR2 ainsi que la production de plusieurs médiateurs pro-inflammatoires, dont le TNF-α et le MCP-1. S. suis a induit la translocation du NF-kB. Cet effet était plus rapide dans les cellules stimulées par le mutant déficient en CPS, ce qui suggère que les composants de la paroi cellulaire représentent de puissants inducteurs du NF-kB. De plus, la souche S. suis WT a stimulé l’expression de la phosphotyrosine, de la PKC et de différentes cascades liées à l’enzyme mitogen-activated protein kinase (MAPK). Cependant, les cellules microgliales infectées par le mutant déficient en CPS ont montré des profils de phosphorylation plus forts et plus soutenus que celles infectées par le WT. Finalement, la capsule a aussi modulé l’expression de l’oxyde nitrique synthétase inductible (iNOS) induite par S. suis et par la production subséquente d’oxyde nitrique par la microglie. Ceci pourrait être lié in vivo à la neurotoxicité et à la vasodilatation. Nous pensons que ces résultats contribueront à une meilleure compréhension des mécanismes sous-tendant l’induction de l’inflammation par S. suis, ce qui devrait permettre, d’établir éventuellement des stratégies plus efficaces de lutte contre la septicémie et la méningite. Enfin, nous pensons que ce modèle expérimental d’infection chez la souris pourra être utilisé dans l’étude de la pathogénèse d’autres bactéries ayant le SNC pour cible.
Resumo:
L’encéphalopathie hypoxique-‐ischémique cause des milliers de victimes à travers le monde chaque année. Les enfants survivants à un épisode hypoxique-‐ischémique sont à risque de développer des problèmes neurologiques incapacitants comme une paralysie cérébrale, un retard mental, une épilepsie ou des troubles d’ordre comportemental. Les modèles animaux ont amélioré nos connaissances sur les mécanismes sous-‐jacents aux dommages cérébraux, mais elles sont encore trop incomplètes pour être capables de prévenir les problèmes neurologiques. Ce projet vise à comprendre l’impact d’un épisode asphyxique périnatale associé à des convulsions ainsi que l’activation de l’adenosine monophosphate-‐activated protein kinase (AMPK) sur les circuits GABAergiques inhibiteurs en développement chez la souris. Dans le but d’investiguer le sort des neurones inhibiteurs, appelés interneurones, suite à un épisode asphyxique périnatal associé à des convulsions avec des animaux transgéniques, nous avons pris avantage d’un nouveau modèle d’hypoxie permettant d’induire des convulsions chez la souris. Deux populations d’interneurones représentant ensemble environ 60% de tous les interneurones corticaux ont été étudiées, soit les cellules exprimant la parvalbumine (PV) et les cellules exprimant la somatostatine (SOM). L’étude stéréologique n’a montré aucune mort neuronale de ces deux populations d’interneurones dans l’hippocampe chez les souris hypoxique d’âge adulte. Par contre, le cortex des souris hypoxiques présentait des zones complètement ou fortement dépourvues de cellules PV alors que les cellules SOM n’étaient pas affectées. L’utilisation d’une lignée de souris transgénique exprimant une protéine verte fluorescente (GFP) dans les cellules PV nous a permis de comprendre que les trous PV sont le reflet de deux choses : 1) une diminution des cellules PV et 2) une immaturité des cellules PV restantes. Puisque les cellules PV sont spécifiquement affectées dans la première partie de notre étude, nous avons voulu étudier les mécanismes moléculaires sous-‐jacents à cette vulnérabilité. L’AMPK est un senseur d’énergie qui orchestre le rétablissement des i niveaux d’énergie cellulaire dans le cas d’une déplétion énergétique en modulant des voies de signalisation impliquant la synthèse de protéines et l’excitabilité membranaire. Il est possible que l’activation d’AMPK suite à un épisode asphyxique périnatal associé à des convulsions soit néfaste à long-‐terme pour le circuit GABAergique en développement et modifie l’établissement de l’innervation périsomatique d’une cellule PV sur les cellules pyramidales. Nous avons étudié cette hypothèse dans un modèle de culture organotypique en surexprimant la forme wild-‐type (WT) de la sous-‐unité α2 d’AMPK, ainsi qu’une forme mutée dominante négative (DN), dans des cellules PV individuelles. Nous avons montré que pendant la phase de formation synaptique (jours post-‐natals équivalents EP 10-‐18), la surexpression de la forme WT désorganise la stabilisation des synapses. De plus, l’abolition de l’activité d’AMPK semble augmenter le nombre de synapses périsomatiques faits par la cellule PV sur les cellules pyramidales pendant la phase de formation et semble avoir l’effet inverse pendant la phase de maturation (EP 16-‐24). La neurotransmission GABAergique joue plusieurs rôles dans le cerveau, depuis la naissance jusqu’à l’âge adulte des interneurones, et une dysfonction des interneurones a été associée à plusieurs troubles neurologiques, comme la schizophrénie, l’autisme et l’épilepsie. La maturation des circuits GABAergiques se fait majoritairement pendant la période post-‐natale et est hautement dépendante de l’activité neuronale et de l’expérience sensorielle. Nos résultats révèlent que le lourd fardeau en demande énergétique d’un épisode asphyxique périnatal peut causer une mort neuronale sélective des cellules PV et compromettre l’intégrité de leur maturation. Un des mécanismes sous-‐ jacents possible à cette immaturité des cellules PV suite à l’épisode hypoxique est l’activation d’AMPK, en désorganisant leur profil d’innervation sur les cellules pyramidales. Nous pensons que ces changements dans le réseau GABAergique pourrait contribuer aux problèmes neurologiques associés à une insulte hypoxique.
Resumo:
Connue pour son rôle dans la cascade de coagulation, la thrombine, une protéase à sérine, peut également agir par l’intermédiaire de PAR1, un récepteur activé par protéase et couplé aux protéines G liant le GTP (GPCR). La thrombine se lie et clive l’extrémité N-terminale du PAR1 entre l’Arg41 et la Ser42, exposant une nouvelle extrémité terminale qui agit elle-même comme un ligand. La thrombine et une séquence peptidique de cinq acides aminés, composée des résidus Ser42 à Arg46, nommée PAR1-AP, déclenchent dans diverses cellules de mammifères une réponse intracellulaire comportant une composante calcique. Dans cette étude, le système d’expression par baculovirus dans les cellules Sf9 d'insecte nous a permis d'exprimer le récepteur PAR1 du rat à la surface de ces cellules et de réaliser son couplage fonctionnel à leur signalisation intracellulaire (modèle rPAR1-Sf9). La composante calcique de celle-ci, en réponse au PAR1-AP, a ensuite été étudiée en détail à l’aide de la sonde fluorescente Fura-2 et de plusieurs inhibiteurs agissant sur les canaux calciques ou d'autres éléments de la cascade de signalisation du calcium intracellulaire. Lorsque le milieu extracellulaire contient du calcium (Ca2+), la thrombine ou PAR1-AP déclenchent un signal calcique qui consiste en une augmentation rapide de [Ca2+]i suivi d’un plateau relativement soutenu, puis d'un retour lent vers le niveau de base initial. En l'absence de Ca2+ dans le milieu extracellulaire, l'augmentation initiale rapide de [Ca2+]i est suivie d'un retour rapide vers le [Ca2+]i de base. À l’aide d’inhibiteurs de canaux calciques, tels que le lanthane, la nifédipine et le D-600, l'entrée du calcium du milieu extracellulaire dans les cellules est inhibée, abolissant le plateau soutenu de [Ca2+]i. L’inhibition de la pompe Ca2+-ATPase par la thapsigargine supprime la réponse au PAR1-AP après épuisement des sites de stockage de Ca2+intracellulaire. Le TMB-8 agit de façon discordante quant à l’inhibition de la libération de Ca2+ des sites de stockage intracellulaires. La réponse à PAR1-AP n’est pas affectée par le D-609, un inhibiteur de la phospholipase β. L’inhibition de la protéine kinase C (PKC) par le bisindolylmaléimide induit des oscillations en présence de Ca2+ extracellulaire et atténue fortement le signal calcique en absence de Ca2+ extracellulaire. En présence de Ca2+ extracellulaire, l’activation de la PKC par le PBDu tronque le flux de [Ca2+]i tandis que la réponse calcique est abolie en absence de Ca2+ dans le milieu extracellulaire. Le H-89, un inhibiteur de la protéine kinase A (PKA), cause une prolongation de la durée du plateau de [Ca2+]i dans un milieu riche en calcium et la suppression de la réponse à PAR1-AP lorsque le milieu extracellulaire est dépourvu de Ca2+. Les résultats obtenus nous permettent de conclure que la PKC et possiblement la PKA jouent un rôle critique dans la mobilisation du Ca2+ induite par le PAR1-AP dans le modèle rPAR1-Sf9.
Resumo:
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière.