6 resultados para API (Application Programming Interface)
em Université de Montréal, Canada
Resumo:
clRNG et clProbdist sont deux interfaces de programmation (APIs) que nous avons développées pour la génération de nombres aléatoires uniformes et non uniformes sur des dispositifs de calculs parallèles en utilisant l’environnement OpenCL. La première interface permet de créer au niveau d’un ordinateur central (hôte) des objets de type stream considérés comme des générateurs virtuels parallèles qui peuvent être utilisés aussi bien sur l’hôte que sur les dispositifs parallèles (unités de traitement graphique, CPU multinoyaux, etc.) pour la génération de séquences de nombres aléatoires. La seconde interface permet aussi de générer au niveau de ces unités des variables aléatoires selon différentes lois de probabilité continues et discrètes. Dans ce mémoire, nous allons rappeler des notions de base sur les générateurs de nombres aléatoires, décrire les systèmes hétérogènes ainsi que les techniques de génération parallèle de nombres aléatoires. Nous présenterons aussi les différents modèles composant l’architecture de l’environnement OpenCL et détaillerons les structures des APIs développées. Nous distinguons pour clRNG les fonctions qui permettent la création des streams, les fonctions qui génèrent les variables aléatoires uniformes ainsi que celles qui manipulent les états des streams. clProbDist contient les fonctions de génération de variables aléatoires non uniformes selon la technique d’inversion ainsi que les fonctions qui permettent de retourner différentes statistiques des lois de distribution implémentées. Nous évaluerons ces interfaces de programmation avec deux simulations qui implémentent un exemple simplifié d’un modèle d’inventaire et un exemple d’une option financière. Enfin, nous fournirons les résultats d’expérimentation sur les performances des générateurs implémentés.
Resumo:
Ecole polytechnique de Montréal, département de mathématiques, André Fortin, et Pierre Carreau du département de génie chimique
Resumo:
Affiliation: Département de Biochimie, Faculté de médecine, Université de Montréal
Resumo:
This work describes a methodology for converting a specialized dictionary into a learner’s dictionary. The dictionary to which we apply our conversion method is the DiCoInfo, Dictionnaire fondamental de l’informatique et de l’Internet. We focus on changes affecting the presentation of data categories. What is meant by specialized dictionary for learners, in our case, is a dictionary covering the field of computer science and Internet meeting our users’ needs in communicative and cognitive situations. Our dictionary is aimed at learners’ of the computing language. We start by presenting a detailed description of four dictionaries for learners. We explain how the observations made on these resources have helped us in developing our methodology.In order to develop our methodology, first, based on Bergenholtz and Tarp’s works (Bergenholtz 2003; Tarp 2008; Fuertes Olivera and Tarp 2011), we defined the type of users who may use our dictionary. Translators are our first intended users. Other users working in the fields related to translation are also targeted: proofreaders, technical writers, interpreters. We also determined the use situations of our dictionary. It aims to assist the learners in solving text reception and text production problems (communicative situations) and in studying the terminology of computing (cognitive situations). Thus, we could establish its lexicographical functions: communicative and cognitive functions. Then, we extracted 50 articles from the DiCoInfo to which we applied a number of changes in different aspects: the layout, the presentation of data, the navigation and the use of multimedia. The changes were made according to two fundamental parameters: 1) simplification of the presentation; 2) lexicographic functions (which include the intended users and user’s situations). In this way, we exploited the widgets offered by the technology to update the interface and layout. Strategies have been developed to organize a large number of lexical links in a simpler way. We associated these links with examples showing their use in specific contexts. Multimedia as audio pronunciation and illustrations has been used.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.