2 resultados para ANOMALOUS DIFFRACTION GRATINGS

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'élastographie ultrasonore est une technique d'imagerie émergente destinée à cartographier les paramètres mécaniques des tissus biologiques, permettant ainsi d’obtenir des informations diagnostiques additionnelles pertinentes. La méthode peut ainsi être perçue comme une extension quantitative et objective de l'examen palpatoire. Diverses techniques élastographiques ont ainsi été proposées pour l'étude d'organes tels que le foie, le sein et la prostate et. L'ensemble des méthodes proposées ont en commun une succession de trois étapes bien définies: l'excitation mécanique (statique ou dynamique) de l'organe, la mesure des déplacements induits (réponse au stimulus), puis enfin, l'étape dite d'inversion, qui permet la quantification des paramètres mécaniques, via un modèle théorique préétabli. Parallèlement à la diversification des champs d'applications accessibles à l'élastographie, de nombreux efforts sont faits afin d'améliorer la précision ainsi que la robustesse des méthodes dites d'inversion. Cette thèse regroupe un ensemble de travaux théoriques et expérimentaux destinés à la validation de nouvelles méthodes d'inversion dédiées à l'étude de milieux mécaniquement inhomogènes. Ainsi, dans le contexte du diagnostic du cancer du sein, une tumeur peut être perçue comme une hétérogénéité mécanique confinée, ou inclusion, affectant la propagation d'ondes de cisaillement (stimulus dynamique). Le premier objectif de cette thèse consiste à formuler un modèle théorique capable de prédire l'interaction des ondes de cisaillement induites avec une tumeur, dont la géométrie est modélisée par une ellipse. Après validation du modèle proposé, un problème inverse est formulé permettant la quantification des paramètres viscoélastiques de l'inclusion elliptique. Dans la continuité de cet objectif, l'approche a été étendue au cas d'une hétérogénéité mécanique tridimensionnelle et sphérique avec, comme objectifs additionnels, l'applicabilité aux mesures ultrasonores par force de radiation, mais aussi à l'estimation du comportement rhéologique de l'inclusion (i.e., la variation des paramètres mécaniques avec la fréquence d'excitation). Enfin, dans le cadre de l'étude des propriétés mécaniques du sang lors de la coagulation, une approche spécifique découlant de précédents travaux réalisés au sein de notre laboratoire est proposée. Celle-ci consiste à estimer la viscoélasticité du caillot sanguin via le phénomène de résonance mécanique, ici induit par force de radiation ultrasonore. La méthode, dénommée ARFIRE (''Acoustic Radiation Force Induced Resonance Elastography'') est appliquée à l'étude de la coagulation de sang humain complet chez des sujets sains et sa reproductibilité est évaluée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beaucoup d'efforts dans le domaine des matériaux polymères sont déployés pour développer de nouveaux matériaux fonctionnels pour des applications spécifiques, souvent très sophistiquées, en employant des méthodes simplifiées de synthèse et de préparation. Cette thèse porte sur les polymères photosensibles – i.e. des matériaux fonctionnels qui répondent de diverses manières à la lumière – qui sont préparés à l'aide de la chimie supramoléculaire – i.e. une méthode de préparation qui repose sur l'auto-assemblage spontané de motifs moléculaires plus simples via des interactions non covalentes pour former le matériau final désiré. Deux types de matériaux photosensibles ont été ciblés, à savoir les élastomères thermoplastiques à base de copolymères à blocs (TPE) et les complexes d'homopolymères photosensibles. Les TPEs sont des matériaux bien connus, et même commercialisés, qui sont généralement composés d’un copolymère tribloc, avec un bloc central très flexible et des blocs terminaux rigides qui présentent une séparation de phase menant à des domaines durs isolés, composés des blocs terminaux rigides, dans une matrice molle formée du bloc central flexible, et ils ont l'avantage d'être recyclable. Pour la première fois, au meilleur de notre connaissance, nous avons préparé ces matériaux avec des propriétés photosensibles, basé sur la complexation supramoléculaire entre un copolymère tribloc simple parent et une petite molécule possédant une fonctionnalité photosensible via un groupe azobenzène. Plus précisément, il s’agit de la complexation ionique entre la forme quaternisée d'un copolymère à blocs, le poly(méthacrylate de diméthylaminoéthyle)-poly(acrylate de n-butyle)-poly(méthacrylate de diméthylaminoéthyle) (PDM-PnBA-PDM), synthétisé par polymérisation radicalaire par transfert d’atomes (ATRP), et l'orange de méthyle (MO), un composé azo disponible commercialement comportant un groupement SO3 -. Le PnBA possède une température de transition vitreuse en dessous de la température ambiante (-46 °C) et les blocs terminaux de PDM complexés avec le MO ont une température de transition vitreuse élevée (140-180 °C, en fonction de la masse molaire). Des tests simples d'élasticité montrent que les copolymères à blocs complexés avec des fractions massiques allant de 20 à 30% présentent un caractère élastomère. Des mesures d’AFM et de TEM (microscopie à force atomique et électronique à ii transmission) de films préparés à l’aide de la méthode de la tournette, montrent une corrélation entre le caractère élastomère et les morphologies où les blocs rigides forment une phase minoritaire dispersée (domaines sphériques ou cylindriques courts). Une phase dure continue (morphologie inversée) est observée pour une fraction massique en blocs rigides d'environ 37%, ce qui est beaucoup plus faible que celle observée pour les copolymères à blocs neutres, dû aux interactions ioniques. La réversibilité de la photoisomérisation a été démontrée pour ces matériaux, à la fois en solution et sous forme de film. La synthèse du copolymère à blocs PDM-PnBA-PDM a ensuite été optimisée en utilisant la technique d'échange d'halogène en ATRP, ainsi qu’en apportant d'autres modifications à la recette de polymérisation. Des produits monodisperses ont été obtenus à la fois pour la macroamorceur et le copolymère à blocs. À partir d'un seul copolymère à blocs parent, une série de copolymères à blocs partiellement/complètement quaternisés et complexés ont été préparés. Des tests préliminaires de traction sur les copolymères à blocs complexés avec le MO ont montré que leur élasticité est corrélée avec la fraction massique du bloc dur, qui peut être ajustée par le degré de quaternisation et de complexation. Finalement, une série de complexes d'homopolymères auto-assemblés à partir du PDM et de trois dérivés azobenzènes portant des groupes (OH, COOH et SO3) capables d'interactions directionnelles avec le groupement amino du PDM ont été préparés, où les dérivés azo sont associés avec le PDM, respectivement, via des interactions hydrogène, des liaisons ioniques combinées à une liaison hydrogène à travers un transfert de proton (acidebase), et des interactions purement ioniques. L'influence de la teneur en azo et du type de liaison sur la facilité d’inscription des réseaux de diffraction (SRG) a été étudiée. L’efficacité de diffraction des SRGs et la profondeur des réseaux inscrits à partir de films préparés à la méthode de la tournette montrent que la liaison ionique et une teneur élevée en azo conduit à une formation plus efficace des SRGs.