63 resultados para endogenous variables
Resumo:
Les questions abordées dans les deux premiers articles de ma thèse cherchent à comprendre les facteurs économiques qui affectent la structure à terme des taux d'intérêt et la prime de risque. Je construis des modèles non linéaires d'équilibre général en y intégrant des obligations de différentes échéances. Spécifiquement, le premier article a pour objectif de comprendre la relation entre les facteurs macroéconomiques et le niveau de prime de risque dans un cadre Néo-keynésien d'équilibre général avec incertitude. L'incertitude dans le modèle provient de trois sources : les chocs de productivité, les chocs monétaires et les chocs de préférences. Le modèle comporte deux types de rigidités réelles à savoir la formation des habitudes dans les préférences et les coûts d'ajustement du stock de capital. Le modèle est résolu par la méthode des perturbations à l'ordre deux et calibré à l'économie américaine. Puisque la prime de risque est par nature une compensation pour le risque, l'approximation d'ordre deux implique que la prime de risque est une combinaison linéaire des volatilités des trois chocs. Les résultats montrent qu'avec les paramètres calibrés, les chocs réels (productivité et préférences) jouent un rôle plus important dans la détermination du niveau de la prime de risque relativement aux chocs monétaires. Je montre que contrairement aux travaux précédents (dans lesquels le capital de production est fixe), l'effet du paramètre de la formation des habitudes sur la prime de risque dépend du degré des coûts d'ajustement du capital. Lorsque les coûts d'ajustement du capital sont élevés au point que le stock de capital est fixe à l'équilibre, une augmentation du paramètre de formation des habitudes entraine une augmentation de la prime de risque. Par contre, lorsque les agents peuvent librement ajuster le stock de capital sans coûts, l'effet du paramètre de la formation des habitudes sur la prime de risque est négligeable. Ce résultat s'explique par le fait que lorsque le stock de capital peut être ajusté sans coûts, cela ouvre un canal additionnel de lissage de consommation pour les agents. Par conséquent, l'effet de la formation des habitudes sur la prime de risque est amoindri. En outre, les résultats montrent que la façon dont la banque centrale conduit sa politique monétaire a un effet sur la prime de risque. Plus la banque centrale est agressive vis-à-vis de l'inflation, plus la prime de risque diminue et vice versa. Cela est due au fait que lorsque la banque centrale combat l'inflation cela entraine une baisse de la variance de l'inflation. Par suite, la prime de risque due au risque d'inflation diminue. Dans le deuxième article, je fais une extension du premier article en utilisant des préférences récursives de type Epstein -- Zin et en permettant aux volatilités conditionnelles des chocs de varier avec le temps. L'emploi de ce cadre est motivé par deux raisons. D'abord des études récentes (Doh, 2010, Rudebusch and Swanson, 2012) ont montré que ces préférences sont appropriées pour l'analyse du prix des actifs dans les modèles d'équilibre général. Ensuite, l'hétéroscedasticité est une caractéristique courante des données économiques et financières. Cela implique que contrairement au premier article, l'incertitude varie dans le temps. Le cadre dans cet article est donc plus général et plus réaliste que celui du premier article. L'objectif principal de cet article est d'examiner l'impact des chocs de volatilités conditionnelles sur le niveau et la dynamique des taux d'intérêt et de la prime de risque. Puisque la prime de risque est constante a l'approximation d'ordre deux, le modèle est résolu par la méthode des perturbations avec une approximation d'ordre trois. Ainsi on obtient une prime de risque qui varie dans le temps. L'avantage d'introduire des chocs de volatilités conditionnelles est que cela induit des variables d'état supplémentaires qui apportent une contribution additionnelle à la dynamique de la prime de risque. Je montre que l'approximation d'ordre trois implique que les primes de risque ont une représentation de type ARCH-M (Autoregressive Conditional Heteroscedasticty in Mean) comme celui introduit par Engle, Lilien et Robins (1987). La différence est que dans ce modèle les paramètres sont structurels et les volatilités sont des volatilités conditionnelles de chocs économiques et non celles des variables elles-mêmes. J'estime les paramètres du modèle par la méthode des moments simulés (SMM) en utilisant des données de l'économie américaine. Les résultats de l'estimation montrent qu'il y a une évidence de volatilité stochastique dans les trois chocs. De plus, la contribution des volatilités conditionnelles des chocs au niveau et à la dynamique de la prime de risque est significative. En particulier, les effets des volatilités conditionnelles des chocs de productivité et de préférences sont significatifs. La volatilité conditionnelle du choc de productivité contribue positivement aux moyennes et aux écart-types des primes de risque. Ces contributions varient avec la maturité des bonds. La volatilité conditionnelle du choc de préférences quant à elle contribue négativement aux moyennes et positivement aux variances des primes de risque. Quant au choc de volatilité de la politique monétaire, son impact sur les primes de risque est négligeable. Le troisième article (coécrit avec Eric Schaling, Alain Kabundi, révisé et resoumis au journal of Economic Modelling) traite de l'hétérogénéité dans la formation des attentes d'inflation de divers groupes économiques et de leur impact sur la politique monétaire en Afrique du sud. La question principale est d'examiner si différents groupes d'agents économiques forment leurs attentes d'inflation de la même façon et s'ils perçoivent de la même façon la politique monétaire de la banque centrale (South African Reserve Bank). Ainsi on spécifie un modèle de prédiction d'inflation qui nous permet de tester l'arrimage des attentes d'inflation à la bande d'inflation cible (3% - 6%) de la banque centrale. Les données utilisées sont des données d'enquête réalisée par la banque centrale auprès de trois groupes d'agents : les analystes financiers, les firmes et les syndicats. On exploite donc la structure de panel des données pour tester l'hétérogénéité dans les attentes d'inflation et déduire leur perception de la politique monétaire. Les résultats montrent qu'il y a évidence d'hétérogénéité dans la manière dont les différents groupes forment leurs attentes. Les attentes des analystes financiers sont arrimées à la bande d'inflation cible alors que celles des firmes et des syndicats ne sont pas arrimées. En effet, les firmes et les syndicats accordent un poids significatif à l'inflation retardée d'une période et leurs prédictions varient avec l'inflation réalisée (retardée). Ce qui dénote un manque de crédibilité parfaite de la banque centrale au vu de ces agents.
Resumo:
Puisque l’altération des habitats d’eau douce augmente, il devient critique d’identifier les composantes de l’habitat qui influencent les métriques de la productivité des pêcheries. Nous avons comparé la contribution relative de trois types de variables d’habitat à l’explication de la variance de métriques d’abondance, de biomasse et de richesse à l’aide de modèles d’habitat de poissons, et avons identifié les variables d’habitat les plus efficaces à expliquer ces variations. Au cours des étés 2012 et 2013, les communautés de poissons de 43 sites littoraux ont été échantillonnées dans le Lac du Bonnet, un réservoir dans le Sud-est du Manitoba (Canada). Sept scénarios d’échantillonnage, différant par l’engin de pêche, l’année et le moment de la journée, ont été utilisés pour estimer l’abondance, la biomasse et la richesse à chaque site, toutes espèces confondues. Trois types de variables d’habitat ont été évalués: des variables locales (à l’intérieur du site), des variables latérales (caractérisation de la berge) et des variables contextuelles (position relative à des attributs du paysage). Les variables d’habitat locales et contextuelles expliquaient en moyenne un total de 44 % (R2 ajusté) de la variation des métriques de la productivité des pêcheries, alors que les variables d’habitat latérales expliquaient seulement 2 % de la variation. Les variables les plus souvent significatives sont la couverture de macrophytes, la distance aux tributaires d’une largeur ≥ 50 m et la distance aux marais d’une superficie ≥ 100 000 m2, ce qui suggère que ces variables sont les plus efficaces à expliquer la variation des métriques de la productivité des pêcheries dans la zone littorale des réservoirs.
Étude du rôle des régions variables 4 et 5 dans les changements de conformation de la gp120 du VIH-1
Resumo:
Le VIH infecte les cellules par fusion de sa membrane avec la membrane de la cellule cible. Cette fusion est effectuée par les glycoprotéines de l'enveloppe (Env) qui sont synthétisées en tant que précurseur, gp160, qui est ensuite clivé en gp120 et gp41. La protéine gp41 est la partie transmembranaire du complexe de l'enveloppe et l’ancre à la particule virale alors que la gp120 assure la liaison au récepteur cellulaire CD4 et corécepteur CCR5 ou CXCR4. Ces interactions successives induisent des changements de conformation d’Env qui alimentent le processus d'entrée du virus conduisant finalement à l'insertion du peptide de fusion de la gp41 dans la membrane de la cellule cible. La sous-unité extérieure gp120 contient cinq régions variables (V1 à V5), dont trois (V1, V2 et V3) étant capables d’empêcher l’adoption spontanée de la conformation liée à CD4. Cependant, le rôle de régions variables V4 et V5 vis-à-vis de ces changements de conformation reste inconnu. Pour étudier leur effet, des mutants de l'isolat primaire de clade B YU2, comprenant une délétion de la V5 ou une mutation au niveau de tous les sites potentiels de N-glycosylation de la V4 (PNGS), ont été générés. L'effet des mutations sur la conformation des glycoprotéines d'enveloppe a été analysé par immunoprécipitation et résonance de plasmon de surface avec des anticorps dont la liaison dépend de la conformation adopté par la gp120. Ni le retrait des PNGS de la V4 ni la délétion de V5 n’a affecté les changements conformationnels d’Env tels que mesurés par ces techniques, ce qui suggère que les régions variables V1, V2 et V3 sont les principaux acteurs dans la prévention de l’adoption de la conformation lié de CD4 d’Env.