175 resultados para Neurones miroirs
Resumo:
Quatre microélectrodes ont été insérées dans le ganglion stellaire gauche (GS) de préparations canines in vivo pour évaluer la décharge des potentiels d’action dans les neurones situés dans ce ganglion périphérique durant un état cardiovasculaire stable et suivant des injections systémiques et locales de nicotine. Durant les périodes de contrôle, des changements mineurs ont été observés dans la pression artérielle systolique, dans le rythme cardiaque et dans le temps de conduction atrio-ventriculaire. L’activité générée par les neurones du GS est demeurée relativement constante à l’intérieure de chaque chien, mais variait entre les préparations. L’administration de nicotine systémique a altéré les variables physiologiques et augmenté l’activité neuronale. Même si différents changements au niveau des variables physiologiques ont été observés entre les animaux, ces changements demeuraient relativement constants pour un même animal. La dynamique de la réponse neuronale était similaire, mais l’amplitude et la durée variaient entre et au sein des chiens. L’injection de nicotine dans une artère à proximité du GS a provoqué une augmentation marquée des potentiels d’action sans faire changer les variables physiologiques. La technique d’enregistrement permet donc de suivre le comportement de multiples populations de neurones intrathoraciques situés dans le GS. La relation entre l’activation neuronale du GS et les changements physiologiques sont stables pour chaque chien, mais varient entre les animaux. Cela suggère que le poids relatif des boucles de rétroaction impliquées dans la régulation cardiovasculaire peut être une caractéristique propre à chaque animal.
Resumo:
Introduction: Chez les mammifères, la naissance de nouveaux neurones se poursuit à l’âge adulte dans deux régions du cerveau: 1) l’hippocampe et 2) la zone sous-ventriculaire du prosencéphale. La neurogenèse adulte n’est pas un processus stable et peut être affectée par divers facteurs tels que l’âge et la maladie. De plus, les modifications de la neurogenèse peuvent être à l’origine des maladies de sorte que la régulation ainsi que le rétablissement de la neurogenèse adulte doivent être considérés comme d’importants objectifs thérapeutiques. Chez la souris saine ou malade, la neurogenèse hippocampale peut être fortement régulée par l’enrichissement environnemental ainsi que par l’activité physique. Cependant, lors même que l’activité physique et l’enrichissement environnemental pourraient contribuer au traitement de certaines maladies, très peu d’études porte sur les mécanismes moléculaires et physiologiques responsables des changements qui sont en lien avec ces stimuli. Objectifs et hypothèses: Les principaux objectifs de cette étude sont de caractériser les effets de stimuli externes sur la neurogenèse et, par le fait même, d’élucider les mécanismes sous-jacents aux changements observés. En utilisant le modèle d’activité physique volontaire sur roue, cette étude teste les deux hypothèses suivantes: tout d’abord 1) qu’une période prolongée d’activité physique peut influencer la neurogenèse adulte dans le prosencéphale et l’hippocampe, et 2) que l’activité volontaire sur roue peut favoriser la neurogenèse à travers des stimuli dépendants ou indépendants de la course. Méthodes: Afin de valider la première hypothèse, nous avons utilisé un paradigme incluant une activité physique volontaire prolongée sur une durée de six semaines, ainsi que des analyses immunohistochimiques permettant de caractériser l’activité de précurseurs neuronaux dans la zone sous-ventriculaire et l’hippocampe. Ensuite, pour valider la seconde hypothèse, nous avons utlisé une version modifiée du paradigme ci-dessous, en plaçant les animaux (souris) soit dans des cages traditionnelles, soit dans des cages munies d’une roue bloquée soit dans des cages munies d’une roue fonctionnelle. Résultats: En accord avec la première hypothèse, l’activité physique prolongée volontaire a augmenté la prolifération des précurseurs neuronaux ainsi que la neurogenèse dans le gyrus dentelé de l’hippocampe comparativement aux animaux témoins, confirmant les résultats d’études antérieures. Par ailleurs, dans ce paradigme, nous avons aussi observé de la prolifération acrue au sein de la zone sous-ventriculaire du prosencéphale. De plus, en accord avec la seconde hypothèse, les souris placées dans une cage à roue bloquée ont montré une augmentation de la prolifération des précurseurs neuronaux dans l’hippocampe comparable à celle observée chez les souris ayant accès à une roue fonctionnelle (coureurs). Cependant, seuls les animaux coureurs ont présenté une augmentation de la neurogenèse hippocampale. Conclusions: Ces résultats nous ont permis de tirer deux conclusions nouvelles concernant les effets de l’activité physique (course) sur la neurogenèse. Premièrement, en plus de la prolifération et de la neurogenèse dans le gyrus dentelé de l’hippocampe, la prolifération dans la zone sous-ventriculaire du prosencéphale peut être augmentée par l’activité physique sur roue. Deuxièmement, l’environnement dans lequel l’activité physique a lieu contient différents stimuli qui peuvent influencer certains aspects de la neurogenèse hippocampale en l’absence d’activité physique sur roue (course).
Resumo:
Ce mémoire traite d'abord du problème de la modélisation de l'interprétation des pianistes à l'aide de l'apprentissage machine. Il s'occupe ensuite de présenter de nouveaux modèles temporels qui utilisent des auto-encodeurs pour améliorer l'apprentissage de séquences. Dans un premier temps, nous présentons le travail préalablement fait dans le domaine de la modélisation de l'expressivité musicale, notamment les modèles statistiques du professeur Widmer. Nous parlons ensuite de notre ensemble de données, unique au monde, qu'il a été nécessaire de créer pour accomplir notre tâche. Cet ensemble est composé de 13 pianistes différents enregistrés sur le fameux piano Bösendorfer 290SE. Enfin, nous expliquons en détail les résultats de l'apprentissage de réseaux de neurones et de réseaux de neurones récurrents. Ceux-ci sont appliqués sur les données mentionnées pour apprendre les variations expressives propres à un style de musique. Dans un deuxième temps, ce mémoire aborde la découverte de modèles statistiques expérimentaux qui impliquent l'utilisation d'auto-encodeurs sur des réseaux de neurones récurrents. Pour pouvoir tester la limite de leur capacité d'apprentissage, nous utilisons deux ensembles de données artificielles développées à l'Université de Toronto.
Resumo:
Afin de mieux comprendre l’évolution des fonctions du récepteur EphA4 pendant le développement du système nerveux central (SNC), nous avons étudié sa localisation cellulaire et subcellulaire dans l’hippocampe du rat, d’abord chez l’adulte, puis pendant le développement postnatal, ainsi que ses rôles potentiels dans la genèse, la migration ou la maturation des cellules granulaires dans l’hippocampe adulte. Pour ce faire, nous avons utilisé la méthode d’immunocytochimie en microscopie photonique, électronique et confocale. En microscopie photonique, une forte immunoréactivité (peroxydase/DAB) pour EphA4 est observée aux jours 1 et 7 suivant la naissance (P1 et P7) dans les couches de corps cellulaires, avec un marquage notamment associé à la surface des corps cellulaires des cellules granulaires et pyramidales, ainsi que dans les couches de neuropile du gyrus dentelé et des secteurs CA3 et CA1. L’intensité du marquage diminue progressivement dans les couches de corps cellulaires, entre P7 et P14, pour devenir faible à P21 et chez l’adulte, tandis qu’elle persiste dans les couches de neuropile, sauf celles qui reçoivent des afférences du cortex entorhinal. En microscopie électronique, après marquage à la peroxydase/DAB, EphA4 décore toute la surface des cellules pyramidales et granulaires, du corps cellulaire jusqu’aux extrémités distales, entre P1 et P14, pour devenir confiné aux extrémités synaptiques, c’est-à-dire les terminaisons axonales et les épines dendritiques, à P21 et chez l’adulte. À la membrane plasmique des astrocytes, EphA4 est redistribué comme dans les neurones, marquant le corps cellulaire et ses prolongements proximaux à distaux, à P1 et P7, pour devenir restreint aux prolongements périsynaptiques distaux, à partir de P14. D’autre part, des axones en cours de myélinisation présentent souvent une forte immunoréactivité punctiforme à leur membrane plasmique, à P14 et P21. En outre, dans les neurones et les astrocytes, le réticulum endoplasmique, l’appareil de Golgi et les vésicules de transport, organelles impliquées dans la synthèse, la modification posttraductionnelle et le transport des protéines glycosylées, sont aussi marqués, et plus intensément chez les jeunes animaux. Enfin, EphA4 est aussi localisé dans le corps cellulaire et les dendrites des cellules granulaires générées chez l’adulte, au stade de maturation où elles expriment la doublecortine (DCX). De plus, des souris adultes knockouts pour EphA4 présentent des cellules granulaires DCX-positives ectopiques, c’est-à-dire positionnées en dehors de la zone sous-granulaire, ce qui suggère un rôle d’EphA4 dans la régulation de leur migration. Ces travaux révèlent ainsi une redistribution d’EphA4 dans les cellules neuronales et gliales en maturation, suivant les sites cellulaires où un remodelage morphologique s’effectue : les corps cellulaires lorsqu’ils s’organisent en couches, les prolongements dendritiques et axonaux pendant leur croissance, guidage et maturation, puis les épines dendritiques, les terminaisons axonales et les prolongements astrocytaires distaux associés aux synapses excitatrices, jusque chez l’adulte, où la formation de nouvelles synapses et le renforcement des connexions synaptiques existantes sont exercés. Ces localisations pourraient ainsi correspondre à différents rôles d’EphA4, par lesquels il contribuerait à la régulation des capacités plastiques du SNC, selon le stade développemental, la région, l’état de santé, ou l’expérience comportementale de l’animal.
Resumo:
La neurogenèse persiste à l’âge adulte dans deux régions du système nerveux central (SNC) des mammifères : la zone sous-ventriculaire (SVZ) du cerveau antérieur et la zone sous-granulaire (SGZ) de l’hippocampe. Cette neurogenèse est possible grâce à la capacité de prolifération des cellules souches présentes dans les niches de la SVZ et la SGZ, mais en vieillissant, le cerveau subit une diminution dramatique du nombre de cellules souches neurales adultes (CSNa), une diminution de la prolifération cellulaire et une altération des niches de neurogenèse. Cependant, une importante question reste sans réponse : comment la perte tardive des CSNa est temporellement reliée aux changements de l’activité de prolifération et de la structure de la principale niche de neurogenèse (la SVZ)? Afin d’avoir un aperçu sur les événements initiaux, nous avons examiné les changements des CSNa et de leur niche dans la SVZ entre le jeune âge et l’âge moyen. La niche de la SVZ des souris d’âge moyen (12 mois) subit une réduction de l’expression des marqueurs de plusieurs sous-populations de précurseurs neuraux en comparaison avec les souris jeunes adultes (2 mois). Anatomiquement, cela est associé avec des anomalies cytologiques, incluant une atrophie générale de la SVZ, une perte de la couche de cellules sousépendymaires par endroit et l’accumulation de gouttelettes lipidiques de grande taille dans l’épendyme. Fonctionnellement, ces changements sont corrélés avec une diminution de l’activité de la SVZ et une réduction du nombre de nouveaux neurones arrivant aux bulbes olfactifs. Pour déterminer si les CSNa de la SVZ ont subi des changements visibles, nous avons évalué les paramètres clés des CSNa in vivo et in vitro. La culture cellulaire montre qu’un nombre équivalent de CSNa ayant la capacité de former des neurosphères peut être isolé du cerveau du jeune adulte et d’âge moyen. Cependant, à l’âge moyen, les précurseurs neuraux semblent moins sensibles aux facteurs de croissance durant leur différenciation in vitro. Les CSNa donnent des signes de latence in vivo puisque leur capacité d’incorporation et de rétention du BrdU diminue. Ensemble, ces données démontrent que, tôt dans le processus du vieillissement, les CSNa et leur niche dans la SVZ subissent des changements significatifs, et suggèrent que la perte de CSNa liée au vieillissement est secondaire à ces événements.
Resumo:
Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle i et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des ii polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale.
Resumo:
Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la modélisation des fonctions comportant plusieurs facteurs de variation. Nous sommes particulièrement intéressés par ce genre de données car nous espérons qu'un agent intelligent sera en mesure d'apprendre à les modéliser automatiquement; l'hypothèse est que les architectures profondes sont mieux adaptées pour les modéliser. Les travaux de Hinton (2006) furent une véritable percée, car l'idée d'utiliser un algorithme d'apprentissage non-supervisé, les machines de Boltzmann restreintes, pour l'initialisation des poids d'un réseau de neurones supervisé a été cruciale pour entraîner l'architecture profonde la plus populaire, soit les réseaux de neurones artificiels avec des poids totalement connectés. Cette idée a été reprise et reproduite avec succès dans plusieurs contextes et avec une variété de modèles. Dans le cadre de cette thèse, nous considérons les architectures profondes comme des biais inductifs. Ces biais sont représentés non seulement par les modèles eux-mêmes, mais aussi par les méthodes d'entraînement qui sont souvent utilisés en conjonction avec ceux-ci. Nous désirons définir les raisons pour lesquelles cette classe de fonctions généralise bien, les situations auxquelles ces fonctions pourront être appliquées, ainsi que les descriptions qualitatives de telles fonctions. L'objectif de cette thèse est d'obtenir une meilleure compréhension du succès des architectures profondes. Dans le premier article, nous testons la concordance entre nos intuitions---que les réseaux profonds sont nécessaires pour mieux apprendre avec des données comportant plusieurs facteurs de variation---et les résultats empiriques. Le second article est une étude approfondie de la question: pourquoi l'apprentissage non-supervisé aide à mieux généraliser dans un réseau profond? Nous explorons et évaluons plusieurs hypothèses tentant d'élucider le fonctionnement de ces modèles. Finalement, le troisième article cherche à définir de façon qualitative les fonctions modélisées par un réseau profond. Ces visualisations facilitent l'interprétation des représentations et invariances modélisées par une architecture profonde.
Resumo:
Les astrocytes sont des cellules gliales présentes dans le système nerveux central, qui exercent de nombreuses fonctions physiologiques essentielles et sont impliquées dans la réponse aux lésions et dans plusieurs pathologies du cerveau. Les astrocytes sont générés par les cellules de la glie radiale, les précurseurs communs de la plupart des cellules neuronales et gliales du cerveau, après le début de la production des neurones. Le passage de la neurogenèse à la gliogenèse est le résultat de mécanismes moléculaires complexes induits par des signaux intrinsèques et extrinsèques responsables du changement de propriété des précurseurs et de leur spécification. Le gène Pax6 code pour un facteur de transcription hautement conservé, impliqué dans plusieurs aspects du développement du système nerveux central, tels que la régionalisation et la neurogenèse. Il est exprimé à partir des stades les plus précoces dans les cellules neuroépithéliales (les cellules souches neurales) et dans la glie radiale, dérivant de la différenciation de ces cellules. L’objectif de cette étude est d’analyser le rôle de Pax6 dans la différenciation et dans le développement des astrocytes. À travers l’utilisation d’un modèle murin mutant nul pour Pax6, nous avons obtenu des résultats suggérant que la suppression de ce gène cause l'augmentation de la prolifération et de la capacité d'auto-renouvellement des cellules souches neurales embryonnaires. In vitro, les cellules mutantes prolifèrent de façon aberrante et sous-expriment les gènes p57Kip2, p16Ink4a, p19Arf et p21Cip1, qui inhibent la progression du le cycle cellulaire. De plus, Pax6 promeut la différenciation astrocytaire des cellules souches neurales embryonnaires et est requis pour la différenciation des astrocytes dans la moëlle épinière. Les mutants nuls pour Pax6 meurent après la naissance à cause de graves défauts développementaux dus aux fonctions essentielles de ce gène dans le développement embryonnaire de plusieurs organes. En utilisant un modèle murin conditionnel basé sur le système CRE/ loxP (hGFAP-CRE/ Pax6flox/flox) qui présente l’inactivation de Pax6 dans les cellules de la glie radiale, viable après la naissance, nous avons montré que Pax6 est impliqué dans la maturation et dans le développement post-natal des astrocytes. Le cortex cérébral des souris mutantes conditionnelles ne présente pas d’astrocytes matures à l’âge de 16 jours et une très faible quantité d’astrocytes immatures à l’âge de trois mois, suggérant que Pax6 promeut la différenciation et la maturation des astrocytes. De plus, Pax6 semble jouer un rôle même dans le processus de différenciation et de maturation de cellules gliales rétiniennes. L’étude des gènes et des mécanismes moléculaires impliqués dans la génération des astrocytes est crucial pour mieux comprendre le rôle physiologique et les altérations pathologiques des ces cellules.
Resumo:
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.
Resumo:
Les vertébrés, du poisson à l'homme, possèdent un potentiel membranaire médié en partie par les ions chlorure (Cl-). L’une des premières formes d’activité neuronale lors du développement est la dépolarisation médiée par les ions chlorures extrudés par les canaux glycinergiques (GlyR) et GABAergiques. Cette dépolarisation est rendu possible grâce à l’expression retardée du co-transporteur d’ions chlorure et de potassium KCC2 lors du développement qui génère un gradient hyperpolarisant postnatalement chez les mammifères. Le rôle de cette dépolarisation précoce paradoxale durant le développement est inconnu. En injectant l’ARNm de KCC2 dans des embryons de poissons zébrés nouvellement fertilisé, nous avons devancé l’expression de ce co-transporteur rendant ainsi la glycine hyperpolarisante dans tous les neurones dès les premières phases du développement. Nous avons aussi ciblé le récepteur glycinergique directement en bloquant son activité et son expression à l’aide d’une drogue spécifique, la strychnine et d’un morpholino antisens (Knockdown). Dans les trois cas (KCC2, strychnine et GlyR KD), les perturbations de l’activité neuronale ont provoqués des erreurs dans la neurogenèse, en particulier une diminution du nombre d’interneurones sans avoir d’effets sur les motoneurones et les neurones sensoriels. De plus, en bloquant les canaux calciques activés à bas voltage dans le développement avec la drogue nifedipine, il y a des erreurs dans la neurogénèse semblables à celles remarquées dans les trois conditions précédentes. Nous concluons que la dépolarisation précoce par la glycine permet l’entrée du calcium et l’activation de la neurogénèse chez les interneurones.
Resumo:
Le noyau paraventriculaire (PVN) de l'hypothalamus régule une série de phénomènes physiologiques incluant l'équilibre énergétique et la pression artérielle. Nous avons identifié une cascade de facteurs de transcription qui contrôle le développement du PVN. SIM1 et OTP agissent en parallèle pour contrôler la différenciation d'au moins cinq types de neurones identifiables par la production d'OT, AVP, CRH, SS et TRH. Ces Facteurs de transcriptions contrôlent le développement des lignées CRH, AVP et OT en maintenant l'expression de Brn2 qui à son tour est nécessaire pour la différenciation terminale de ces neurones. L'analyse du transcriptome du PVN nous a permis d'identifier plusieurs gènes qui ont le potentiel de contrôler le développement du PVN. Nous voulons développer un paradigme de perte de fonction qui permettrait l'étude de ces gènes candidats sur une grande échelle. Le but de ce projet est de caractériser le PVN en développement de l'amphibien en vue de l'utilisation de ce modèle pour des études fonctionnelles. Nous avons cloné des fragments de cDNA de Sim1, OTP, Brn2, Sim2, CRH, Ot, AVP et TRH à partir de l'ARN total de Xenopus Laevis. Nous avons adapté notre technique d'hybridation in situ pour caractériser l'expression de ces gènes chez l'amphibien aux stades 33-39, 44, 51, 54, 60, et chez l'adulte. Résultats. Les Facteurs de transcription Sim1, OTP, et Brn2 commencent à être exprimés dans le PVN prospectif au stade 33. L'expression des marqueurs de différenciation terminale devient détectable entre les stades 37 et 39. De façon intéressante, le PVN occupe initialement un domaine de forme globulaire puis à partir du stade 44 s'allonge le long de l’axe dorso-ventral. Cet allongement se traduit par une organisation en colonnes des cellules du PVN que nous n'avons pas observée chez les rongeurs. Le développement du PVN est conservé chez l'amphibien dans la mesure où la relation entre l'expression des facteurs de transcription et des marqueurs de différenciation terminale est conservée. Il existe par ailleurs des différences entre la topographie des PVN des mammifères et de l'amphibien. L'organisation en colonnes de cellules pourrait correspondre à des mouvements de migration tangentielle. Nous sommes maintenant en mesure de tester la fonction des facteurs de transcription dans le PVN par l'approche d'invalidation par morpholinos.
Resumo:
Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.
Resumo:
Il y a des indications que les nanocristaux de silicium (nc-Si) présentent un gain optique qui est potentiellement assez grand pour permettre l'amplification optique dans la gamme de longueurs d'ondes où une photoluminescence (PL) intense est mesurée (600- 1000 nm). Afin de fabriquer des cavités optiques, nous avons implantés des morceaux de silice fondue avec des ions de Si pour former une couche de nc-Si d'une épaisseur d'environ 1 μm. Le Si a été implanté à quatre énergies comprises entre 1 MeV et 1,9 MeV de manière à obtenir une concentration atomique de Si en excès variant entre 25% et 30%. Les pièces ont été flanquées de miroirs diélectriques composés de filtres interférentiels multicouches. Sur une plage de longueurs d'ondes d'environ 200 nm de large, un filtre réfléchit près de 100%, alors que l'autre a une réflexion moyenne d'environ 90%. Nous avons mesuré et comparé les spectres de PL de trois échantillons: le premier sans miroir, le second avec des filtres réfléchissant autour de 765 nm (entre 700 nm et 830 nm), et la troisième avec des filtres agissant autour de 875 nm (entre 810 nm et 940 nm). Lorsque les échantillons sont excités avec un laser pulsé à 390 nm, des mesures de photoluminescence résolue dans le temps (PLT) révèlent des taux de décroissance plus rapides en présence de miroirs dans le domaine de longueurs d'onde où ceux-ci agissent comparé aux échantillons sans miroirs. Aussi, l'intensité PL en fonction de la fluence d'excitation montre une augmentation plus rapide de la présence de miroirs, même si celle-ci reste sous-linéaire. Nous concluons que de l'émission stimulée pourrait être présente dans la cavité optique, mais sans dominer les autres mécanismes d'émission et de pertes.
Resumo:
Les neurones du cortex visuel primaire (aire 17) du chat adulte répondent de manière sélective à différentes propriétés d’une image comme l’orientation, le contraste ou la fréquence spatiale. Cette sélectivité se manifeste par une réponse sous forme de potentiels d’action dans les neurones visuels lors de la présentation d’une barre lumineuse de forme allongée dans les champs récepteurs de ces neurones. La fréquence spatiale (FS) se mesure en cycles par degré (cyc./deg.) et se définit par la quantité de barres lumineuses claires et sombres présentées à une distance précise des yeux. Par ailleurs, jusqu’à récemment, l’organisation corticale chez l’adulte était considérée immuable suite à la période critique post-natale. Or, lors de l'imposition d'un stimulus non préféré, nous avons observé un phénomène d'entrainement sous forme d'un déplacement de la courbe de sélectivité à la suite de l'imposition d'une FS non-préférée différente de la fréquence spatiale optimale du neurone. Une deuxième adaptation à la même FS non-préférée induit une réponse neuronale différente par rapport à la première imposition. Ce phénomène de "gain cortical" avait déjà été observé dans le cortex visuel primaire pour ce qui est de la sélectivité à l'orientation des barres lumineuses, mais non pour la fréquence spatiale. Une telle plasticité à court terme pourrait être le corrélat neuronal d'une modulation de la pondération relative du poids des afférences synaptiques.
Resumo:
Les neurones des couches superficielles du collicule supérieur et du cortex visuel primaire du rat adulte sont sensibles à de basses fréquences spatiales de haut contraste défilant à des vitesses élevées. Entre les jours post-nataux 27-30 et l’âge adulte, les fréquences temporelles optimales des neurones du cortex visuel primaire augmentent, tandis que leurs seuils de contraste diminuent. Cependant, les fréquences spatiales optimales, les valeurs de résolution spatiale et les bandes passantes spatiales de ces neurones sont, dès l’ouverture des paupières, similaires à celles observées chez le rat adulte. Ces profils de réponse neuronale suggèrent que les projections rétino-colliculaires et rétino-géniculo-corticales sont essentiellement issues de neurones ganglionnaires rétinofuges magnocellulaires et koniocellulaires. Les neurones du cortex visuel primaire du rat ayant subi des convulsions hyperthermiques présentent, dès l’ouverture des paupières, de basses fréquences spatiales optimales, de larges bandes passantes directionnelles et temporelles ainsi que des seuils de contraste élevés par rapport aux neurones du rat normal. À l’âge adulte, de basses fréquences temporelles optimales et de larges bandes passantes spatiales sont également observées chez le rat ayant subi des convulsions hyperthermiques. L’altération des profils de réponse des neurones du cortex visuel primaire du rat ayant subi de convulsions hyperthermiques suggère un déséquilibre entre les mécanismes neuronaux excitateurs et inhibiteurs de cette aire corticale. Ces résultats suggèrent également qu’un épisode unique de convulsions fébriles infantiles suffit à altérer le développement des propriétés spatio-temporelles des champs récepteurs des neurones du cortex visuel primaire.