90 resultados para Méthodes de Monte Carlo par chaîne de Markov


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses the empirical performance of an intertemporal option pricing model with latent variables which generalizes the Hull-White stochastic volatility formula. Using this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility alone as in the Hull-White case. When we specialize this model to an equilibrium recursive utility model, we show through simulations that option prices are more informative than stock prices about the structural parameters of the model. We also show that a simple method of moments with a panel of option prices provides good estimates of the parameters of the model. This lays the ground for an empirical assessment of this equilibrium model with S&P 500 option prices in terms of pricing errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the issue of estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads us to take into account the covariance between the mean and the variance and the variance of the variance, that is, the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely, the QMLE, the GMM and the M-estimation. The ususal univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular, the importance of skewness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cet article illustre l’applicabilité des méthodes de rééchantillonnage dans le cadre des tests multiples (simultanés), pour divers problèmes économétriques. Les hypothèses simultanées sont une conséquence habituelle de la théorie économique, de sorte que le contrôle de la probabilité de rejet de combinaisons de tests est un problème que l’on rencontre fréquemment dans divers contextes économétriques et statistiques. À ce sujet, on sait que le fait d’ignorer le caractère conjoint des hypothèses multiples peut faire en sorte que le niveau de la procédure globale dépasse considérablement le niveau désiré. Alors que la plupart des méthodes d’inférence multiple sont conservatrices en présence de statistiques non-indépendantes, les tests que nous proposons visent à contrôler exactement le niveau de signification. Pour ce faire, nous considérons des critères de test combinés proposés initialement pour des statistiques indépendantes. En appliquant la méthode des tests de Monte Carlo, nous montrons comment ces méthodes de combinaison de tests peuvent s’appliquer à de tels cas, sans recours à des approximations asymptotiques. Après avoir passé en revue les résultats antérieurs sur ce sujet, nous montrons comment une telle méthodologie peut être utilisée pour construire des tests de normalité basés sur plusieurs moments pour les erreurs de modèles de régression linéaires. Pour ce problème, nous proposons une généralisation valide à distance finie du test asymptotique proposé par Kiefer et Salmon (1983) ainsi que des tests combinés suivant les méthodes de Tippett et de Pearson-Fisher. Nous observons empiriquement que les procédures de test corrigées par la méthode des tests de Monte Carlo ne souffrent pas du problème de biais (ou sous-rejet) souvent rapporté dans cette littérature – notamment contre les lois platikurtiques – et permettent des gains sensibles de puissance par rapport aux méthodes combinées usuelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse porte sur l’amélioration des techniques d’imagerie à haut-contraste permettant la détection directe de compagnons à de faibles séparations de leur étoile hôte. Plus précisément, elle s’inscrit dans le développement du Gemini Planet Imager (GPI) qui est un instrument de deuxième génération pour les télescopes Gemini. Cette caméra utilisera un spectromètre à champ intégral (SCI) pour caractériser les compagnons détectés et pour réduire le bruit de tavelure limitant leur détection et corrigera la turbulence atmosphérique à un niveau encore jamais atteint en utilisant deux miroirs déformables dans son système d’optique adaptative (OA) : le woofer et le tweeter. Le woofer corrigera les aberrations de basses fréquences spatiales et de grandes amplitudes alors que le tweeter compensera les aberrations de plus hautes fréquences ayant une plus faible amplitude. Dans un premier temps, les performances pouvant être atteintes à l’aide des SCIs présentement en fonction sur les télescopes de 8-10 m sont investiguées en observant le compagnon de l’étoile GQ Lup à l’aide du SCI NIFS et du système OA ALTAIR installés sur le télescope Gemini Nord. La technique de l’imagerie différentielle angulaire (IDA) est utilisée pour atténuer le bruit de tavelure d’un facteur 2 à 6. Les spectres obtenus en bandes JHK ont été utilisés pour contraindre la masse du compagnon par comparaison avec les prédictions des modèles atmosphériques et évolutifs à 8−60 MJup, où MJup représente la masse de Jupiter. Ainsi, il est déterminé qu’il s’agit plus probablement d’une naine brune que d’une planète. Comme les SCIs présentement en fonction sont des caméras polyvalentes pouvant être utilisées pour plusieurs domaines de l’astrophysique, leur conception n’a pas été optimisée pour l’imagerie à haut-contraste. Ainsi, la deuxième étape de cette thèse a consisté à concevoir et tester en laboratoire un prototype de SCI optimisé pour cette tâche. Quatre algorithmes de suppression du bruit de tavelure ont été testés sur les données obtenues : la simple différence, la double différence, la déconvolution spectrale ainsi qu’un nouvel algorithme développé au sein de cette thèse baptisé l’algorithme des spectres jumeaux. Nous trouvons que l’algorithme des spectres jumeaux est le plus performant pour les deux types de compagnons testés : les compagnons méthaniques et non-méthaniques. Le rapport signal-sur-bruit de la détection a été amélioré d’un facteur allant jusqu’à 14 pour un compagnon méthanique et d’un facteur 2 pour un compagnon non-méthanique. Dernièrement, nous nous intéressons à certains problèmes liés à la séparation de la commande entre deux miroirs déformables dans le système OA de GPI. Nous présentons tout d’abord une méthode utilisant des calculs analytiques et des simulations Monte Carlo pour déterminer les paramètres clés du woofer tels que son diamètre, son nombre d’éléments actifs et leur course qui ont ensuite eu des répercussions sur le design général de l’instrument. Ensuite, le système étudié utilisant un reconstructeur de Fourier, nous proposons deparer la commande entre les deux miroirs dans l’espace de Fourier et de limiter les modes transférés au woofer à ceux qu’il peut précisément reproduire. Dans le contexte de GPI, ceci permet de remplacer deux matrices de 1600×69 éléments nécessaires pour une séparation “classique” de la commande par une seule de 45×69 composantes et ainsi d’utiliser un processeur prêt à être utilisé plutôt qu’une architecture informatique plus complexe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durant la dernière décennie, les développements technologiques en radiothérapie ont transformé considérablement les techniques de traitement. Les nouveaux faisceaux non standard améliorent la conformité de la dose aux volumes cibles, mais également complexifient les procédures dosimétriques. Puisque des études récentes ont démontré l’invalidité de ces protocoles actuels avec les faisceaux non standard, un nouveau protocole applicable à la dosimétrie de référence de ces faisceaux est en préparation par l’IAEA-AAPM. Le but premier de cette étude est de caractériser les facteurs responsables des corrections non unitaires en dosimétrie des faisceaux non standard, et ainsi fournir des solutions conceptuelles afin de minimiser l’ordre de grandeur des corrections proposées dans le nouveau formalisme de l’IAEA-AAPM. Le deuxième but de l’étude est de construire des méthodes servant à estimer les incertitudes d’une manière exacte en dosimétrie non standard, et d’évaluer les niveaux d’incertitudes réalistes pouvant être obtenus dans des situations cliniques. Les résultats de l’étude démontrent que de rapporter la dose au volume sensible de la chambre remplie d’eau réduit la correction d’environ la moitié sous de hauts gradients de dose. Une relation théorique entre le facteur de correction de champs non standard idéaux et le facteur de gradient du champ de référence est obtenue. En dosimétrie par film radiochromique, des niveaux d’incertitude de l’ordre de 0.3% sont obtenus par l’application d’une procédure stricte, ce qui démontre un intérêt potentiel pour les mesures de faisceaux non standard. Les résultats suggèrent également que les incertitudes expérimentales des faisceaux non standard doivent être considérées sérieusement, que ce soit durant les procédures quotidiennes de vérification ou durant les procédures de calibration. De plus, ces incertitudes pourraient être un facteur limitatif dans la nouvelle génération de protocoles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte : Les stratégies pharmacologiques pour traiter la schizophrénie reçoivent une attention croissante due au développement de nouvelles pharmacothérapies plus efficaces, mieux tolérées mais plus coûteuses. La schizophrénie est une maladie chronique présentant différents états spécifiques et définis par leur sévérité. Objectifs : Ce programme de recherche vise à: 1) Évaluer les facteurs associés au risque d'être dans un état spécifique de la schizophrénie, afin de construire les fonctions de risque de la modélisation du cours naturel de la schizophrénie; 2) Développer et valider un modèle de Markov avec microsimulations de Monte-Carlo, afin de simuler l'évolution naturelle des patients qui sont nouvellement diagnostiqués pour la schizophrénie, en fonction du profil individuel des facteurs de risque; 3) Estimer le coût direct de la schizophrénie (pour les soins de santé et autres non reliés aux soins de santé) dans la perspective gouvernementale et simuler l’impact clinique et économique du développement d’un traitement dans une cohorte de patients nouvellement diagnostiqués avec la schizophrénie, suivis pendant les cinq premières années post-diagnostic. Méthode : Pour le premier objectif de ce programme de recherche, un total de 14 320 patients nouvellement diagnostiqués avec la schizophrénie ont été identifiés dans les bases de données de la RAMQ et de Med-Echo. Les six états spécifiques de la schizophrénie ont été définis : le premier épisode (FE), l'état de dépendance faible (LDS), l’état de dépendance élevée (HDS), l’état stable (Stable), l’état de bien-être (Well) et l'état de décès (Death). Pour évaluer les facteurs associés au risque de se trouver dans chacun des états spécifiques de la schizophrénie, nous avons construit 4 fonctions de risque en se basant sur l'analyse de risque proportionnel de Cox pour des risques compétitifs. Pour le deuxième objectif, nous avons élaboré et validé un modèle de Markov avec microsimulations de Monte-Carlo intégrant les six états spécifiques de la schizophrénie. Dans le modèle, chaque sujet avait ses propres probabilités de transition entre les états spécifiques de la schizophrénie. Ces probabilités ont été estimées en utilisant la méthode de la fonction d'incidence cumulée. Pour le troisième objectif, nous avons utilisé le modèle de Markov développé précédemment. Ce modèle inclut les coûts directs de soins de santé, estimés en utilisant les bases de données de la Régie de l'assurance maladie du Québec et Med-Echo, et les coûts directs autres que pour les soins de santé, estimés à partir des enquêtes et publications de Statistique Canada. Résultats : Un total de 14 320 personnes nouvellement diagnostiquées avec la schizophrénie ont été identifiées dans la cohorte à l'étude. Le suivi moyen des sujets était de 4,4 (± 2,6) ans. Parmi les facteurs associés à l’évolution de la schizophrénie, on peut énumérer l’âge, le sexe, le traitement pour la schizophrénie et les comorbidités. Après une période de cinq ans, nos résultats montrent que 41% des patients seront considérés guéris, 13% seront dans un état stable et 3,4% seront décédés. Au cours des 5 premières années après le diagnostic de schizophrénie, le coût direct moyen de soins de santé et autres que les soins de santé a été estimé à 36 701 $ canadiens (CAN) (95% CI: 36 264-37 138). Le coût des soins de santé a représenté 56,2% du coût direct, le coût de l'aide sociale 34,6% et le coût associé à l’institutionnalisation dans les établissements de soins de longue durée 9,2%. Si un nouveau traitement était disponible et offrait une augmentation de 20% de l'efficacité thérapeutique, le coût direct des soins de santé et autres que les soins de santé pourrait être réduit jusqu’à 14,2%. Conclusion : Nous avons identifié des facteurs associés à l’évolution de la schizophrénie. Le modèle de Markov que nous avons développé est le premier modèle canadien intégrant des probabilités de transition ajustées pour le profil individuel des facteurs de risque, en utilisant des données réelles. Le modèle montre une bonne validité interne et externe. Nos résultats indiquent qu’un nouveau traitement pourrait éventuellement réduire les hospitalisations et le coût associé aux établissements de soins de longue durée, augmenter les chances des patients de retourner sur le marché du travail et ainsi contribuer à la réduction du coût de l'aide sociale.