33 resultados para Calcium, Simulation, Epidermis, Automata
Resumo:
En lien avec l’avancée rapide de la réduction de la taille des motifs en microfabrication, des processus physiques négligeables à plus grande échelle deviennent dominants lorsque cette taille s’approche de l’échelle nanométrique. L’identification et une meilleure compréhension de ces différents processus sont essentielles pour améliorer le contrôle des procédés et poursuivre la «nanométrisation» des composantes électroniques. Un simulateur cellulaire à l’échelle du motif en deux dimensions s’appuyant sur les méthodes Monte-Carlo a été développé pour étudier l’évolution du profil lors de procédés de microfabrication. Le domaine de gravure est discrétisé en cellules carrées représentant la géométrie initiale du système masque-substrat. On insère les particules neutres et ioniques à l’interface du domaine de simulation en prenant compte des fonctions de distribution en énergie et en angle respectives de chacune des espèces. Le transport des particules est effectué jusqu’à la surface en tenant compte des probabilités de réflexion des ions énergétiques sur les parois ou de la réémission des particules neutres. Le modèle d’interaction particule-surface tient compte des différents mécanismes de gravure sèche telle que la pulvérisation, la gravure chimique réactive et la gravure réactive ionique. Le transport des produits de gravure est pris en compte ainsi que le dépôt menant à la croissance d’une couche mince. La validité du simulateur est vérifiée par comparaison entre les profils simulés et les observations expérimentales issues de la gravure par pulvérisation du platine par une source de plasma d’argon.
Resumo:
Les modèles de réflexion complexes, avec leurs nombreux paramètres dont certains restent non intuitifs, sont difficiles à contrôler pour obtenir une apparence désirée. De plus, même si un artiste peut plus aisément comprendre la forme de la micro-géométrie d'une surface, sa modélisation en 3D et sa simulation en 4D demeurent extrêmement fastidieuses et coûteuses en mémoire. Nous proposons une solution intermédiaire, où l'artiste représente en 2D une coupe dans un matériau, en dessinant une micro-géométrie de surface en multi-couches. Une simulation efficace par lancer de rayons en seulement 2D capture les distributions de lumière affectées par les micro-géométries. La déviation hors-plan est calculée automatiquement de façon probabiliste en fonction de la normale au point d'intersection et de la direction du rayon incident. Il en résulte des BRDFs isotropes complètes et complexes, simulées à des vitesses interactives, et permettant ainsi une édition interactive de l'apparence de réflectances riches et variées.
Resumo:
Cette thèse présente une étude dans divers domaines de l'informatique théorique de modèles de calculs combinant automates finis et contraintes arithmétiques. Nous nous intéressons aux questions de décidabilité, d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la logique, l'algèbre et aux applications. Cette étude est présentée au travers de quatre articles de recherche. Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess des automates de Parikh et en définit des généralisations et restrictions. L'automate de Parikh est un point de départ de cette thèse; nous montrons que ce modèle de calcul est équivalent à l'automate contraint que nous définissons comme un automate qui n'accepte un mot que si le nombre de fois que chaque transition est empruntée répond à une contrainte arithmétique. Ce modèle est naturellement étendu à l'automate de Parikh affine qui effectue une opération affine sur un ensemble de registres lors du franchissement d'une transition. Nous étudions aussi l'automate de Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de fois que chaque lettre y apparaît répond à une contrainte arithmétique. Le deuxième article, Bounded Parikh Automata, étudie les langages bornés des automates de Parikh. Un langage est borné s'il existe des mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont importants dans des domaines applicatifs et présentent usuellement de bonnes propriétés théoriques. Nous montrons que dans le contexte des langages bornés, le déterminisme n'influence pas l'expressivité des automates de Parikh. Le troisième article, Unambiguous Constrained Automata, introduit les automates contraints non ambigus, c'est-à-dire pour lesquels il n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de meilleures propriétés de clôture que l'automate contraint déterministe. Le problème de déterminer si le langage d'un automate contraint non ambigu est régulier est montré décidable. Le quatrième article, Algebra and Complexity Meet Contrained Automata, présente une étude des représentations algébriques qu'admettent les automates contraints et les automates de Parikh affines. Nous déduisons de ces caractérisations des résultats d'expressivité et de complexité. Nous montrons aussi que certaines hypothèses classiques en complexité computationelle sont reliées à des résultats de séparation et de non clôture dans les automates de Parikh affines. La thèse est conclue par une ouverture à un possible approfondissement, au travers d'un certain nombre de problèmes ouverts.