45 resultados para Applied artificial intelligence


Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans la sémantique des cadres de Fillmore, les mots prennent leur sens par rapport au contexte événementiel ou situationnel dans lequel ils s’inscrivent. FrameNet, une ressource lexicale pour l’anglais, définit environ 1000 cadres conceptuels, couvrant l’essentiel des contextes possibles. Dans un cadre conceptuel, un prédicat appelle des arguments pour remplir les différents rôles sémantiques associés au cadre (par exemple : Victime, Manière, Receveur, Locuteur). Nous cherchons à annoter automatiquement ces rôles sémantiques, étant donné le cadre sémantique et le prédicat. Pour cela, nous entrainons un algorithme d’apprentissage machine sur des arguments dont le rôle est connu, pour généraliser aux arguments dont le rôle est inconnu. On utilisera notamment des propriétés lexicales de proximité sémantique des mots les plus représentatifs des arguments, en particulier en utilisant des représentations vectorielles des mots du lexique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ce mémoire est composé de trois articles et présente les résultats de travaux de recherche effectués dans le but d'améliorer les techniques actuelles permettant d'utiliser des données associées à certaines tâches dans le but d'aider à l'entraînement de réseaux de neurones sur une tâche différente. Les deux premiers articles présentent de nouveaux ensembles de données créés pour permettre une meilleure évaluation de ce type de techniques d'apprentissage machine. Le premier article introduit une suite d'ensembles de données pour la tâche de reconnaissance automatique de chiffres écrits à la main. Ces ensembles de données ont été générés à partir d'un ensemble de données déjà existant, MNIST, auquel des nouveaux facteurs de variation ont été ajoutés. Le deuxième article introduit un ensemble de données pour la tâche de reconnaissance automatique d'expressions faciales. Cet ensemble de données est composé d'images de visages qui ont été collectées automatiquement à partir du Web et ensuite étiquetées. Le troisième et dernier article présente deux nouvelles approches, dans le contexte de l'apprentissage multi-tâches, pour tirer avantage de données pour une tâche donnée afin d'améliorer les performances d'un modèle sur une tâche différente. La première approche est une généralisation des neurones Maxout récemment proposées alors que la deuxième consiste en l'application dans un contexte supervisé d'une technique permettant d'inciter des neurones à apprendre des fonctions orthogonales, à l'origine proposée pour utilisation dans un contexte semi-supervisé.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les récents avancements en sciences cognitives, psychologie et neurosciences, ont démontré que les émotions et les processus cognitifs sont intimement reliés. Ce constat a donné lieu à une nouvelle génération de Systèmes Tutoriels Intelligents (STI) dont la logique d’adaptation repose sur une considération de la dimension émotionnelle et affective de l’apprenant. Ces systèmes, connus sous le nom de Systèmes Tutoriels Émotionnellement Intelligents (STEI), cherchent à se doter des facultés des tuteurs humains dans leurs capacités à détecter, comprendre et s’adapter intuitivement en fonction de l’état émotionnel des apprenants. Toutefois, en dépit du nombre important de travaux portant sur la modélisation émotionnelle, les différents résultats empiriques ont démontré que les STEI actuels n’arrivent pas à avoir un impact significatif sur les performances et les réactions émotionnelles des apprenants. Ces limites sont principalement dues à la complexité du concept émotionnel qui rend sa modélisation difficile et son interprétation ambiguë. Dans cette thèse, nous proposons d’augmenter les STEI des indicateurs d’états mentaux d’engagement et de charge mentale de travail. Ces états mentaux ont l’avantage d’englober à la fois une dimension affective et cognitive. Pour cela, nous allons, dans une première partie, présenter une approche de modélisation de ces indicateurs à partir des données de l’activité cérébrale des apprenants. Dans une seconde partie, nous allons intégrer ces modèles dans un STEI capable d’adapter en temps réel le processus d’apprentissage en fonction de ces indicateurs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En apprentissage automatique, domaine qui consiste à utiliser des données pour apprendre une solution aux problèmes que nous voulons confier à la machine, le modèle des Réseaux de Neurones Artificiels (ANN) est un outil précieux. Il a été inventé voilà maintenant près de soixante ans, et pourtant, il est encore de nos jours le sujet d'une recherche active. Récemment, avec l'apprentissage profond, il a en effet permis d'améliorer l'état de l'art dans de nombreux champs d'applications comme la vision par ordinateur, le traitement de la parole et le traitement des langues naturelles. La quantité toujours grandissante de données disponibles et les améliorations du matériel informatique ont permis de faciliter l'apprentissage de modèles à haute capacité comme les ANNs profonds. Cependant, des difficultés inhérentes à l'entraînement de tels modèles, comme les minima locaux, ont encore un impact important. L'apprentissage profond vise donc à trouver des solutions, en régularisant ou en facilitant l'optimisation. Le pré-entraînnement non-supervisé, ou la technique du ``Dropout'', en sont des exemples. Les deux premiers travaux présentés dans cette thèse suivent cette ligne de recherche. Le premier étudie les problèmes de gradients diminuants/explosants dans les architectures profondes. Il montre que des choix simples, comme la fonction d'activation ou l'initialisation des poids du réseaux, ont une grande influence. Nous proposons l'initialisation normalisée pour faciliter l'apprentissage. Le second se focalise sur le choix de la fonction d'activation et présente le rectifieur, ou unité rectificatrice linéaire. Cette étude a été la première à mettre l'accent sur les fonctions d'activations linéaires par morceaux pour les réseaux de neurones profonds en apprentissage supervisé. Aujourd'hui, ce type de fonction d'activation est une composante essentielle des réseaux de neurones profonds. Les deux derniers travaux présentés se concentrent sur les applications des ANNs en traitement des langues naturelles. Le premier aborde le sujet de l'adaptation de domaine pour l'analyse de sentiment, en utilisant des Auto-Encodeurs Débruitants. Celui-ci est encore l'état de l'art de nos jours. Le second traite de l'apprentissage de données multi-relationnelles avec un modèle à base d'énergie, pouvant être utilisé pour la tâche de désambiguation de sens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ce mémoire tente de répondre à une problématique très importante dans le domaine de recrutement : l’appariement entre offre d’emploi et candidats. Dans notre cas nous disposons de milliers d’offres d’emploi et de millions de profils ramassés sur les sites dédiés et fournis par un industriel spécialisé dans le recrutement. Les offres d’emploi et les profils de candidats sur les réseaux sociaux professionnels sont généralement destinés à des lecteurs humains qui sont les recruteurs et les chercheurs d’emploi. Chercher à effectuer une sélection automatique de profils pour une offre d’emploi se heurte donc à certaines difficultés que nous avons cherché à résoudre dans le présent mémoire. Nous avons utilisé des techniques de traitement automatique de la langue naturelle pour extraire automatiquement les informations pertinentes dans une offre d’emploi afin de construite une requête qui nous permettrait d’interroger notre base de données de profils. Pour valider notre modèle d’extraction de métier, de compétences et de d’expérience, nous avons évalué ces trois différentes tâches séparément en nous basant sur une référence cent offres d’emploi canadiennes que nous avons manuellement annotée. Et pour valider notre outil d’appariement nous avons fait évaluer le résultat de l’appariement de dix offres d’emploi canadiennes par un expert en recrutement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nous avons développé un jeu sérieux afin d’enseigner aux utilisateurs à dessiner des diagrammes de Lewis. Nous l’avons augmenté d’un environnement pouvant enregistrer des signaux électroencéphalographiques, les expressions faciales, et la pupille d’un utilisateur. Le but de ce travail est de vérifier si l’environnement peut permettre au jeu de s’adapter en temps réel à l’utilisateur grâce à une détection automatique du besoin d’aide de l’utilisateur ainsi que si l’utilisateur est davantage satisfait de son expérience avec l’adaptation. Les résultats démontrent que le système d’adaptation peut détecter le besoin d’aide grâce à deux modèles d’apprentissage machine entraînés différemment, l’un généralisé et l’autre personalisé, avec des performances respectives de 53.4% et 67.5% par rapport à un niveau de chance de 33.3%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le développement exponentiel de la technologie et le vieillissement de la population permettent d’introduire dans notre quotidien les robots d’assistance. La coexistence de l’homme avec ces robots intelligents et autonomes soulève une question fondamentale: dans l’éventualité où un robot provoquerait un accident causant un dommage à une personne ou à un bien qui serait le responsable? Aucune loi ne réglemente les activités de la robotique d’assistance dans le monde. Cette étude vise l’analyse de l’applicabilité des régimes de responsabilité du Code Civil du Québec aux cas de dommages causés par le robot d’assistance. L’analyse des régimes de responsabilité du Code civil du Québec permet de constater que deux régimes de responsabilité sont susceptibles d’être appliqués aux cas spécifiques de dommages causés par le robot d’assistance: le régime de responsabilité du fait des biens, énoncé à l’article 1465 C.c.Q., et le régime de responsabilité du fait des fabricants et vendeurs spécialisés, énoncé à l’article 1468 C.c.Q. Cela s’explique par la présence de critères et de conditions de mise en œuvre des régimes qui sont transposables aux différents aspects concernant la fabrication et l’utilisation du robot d’assistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le but de ce travail est d’étudier la faisabilité de la détection de mouvements dans des séquences d’images en utilisant l’équation de continuité et la dynamique de supraconductivité. Notre approche peut être motivée par le fait que l’équation de continuité apparait dans plusieurs techniques qui estiment le flot optique. Un grand nombre de techniques qui utilisent les flots optiques utilisent une contrainte appelée contrainte de l’invariance lumineuse. La dynamique de supraconductivité nous permet de nous affranchir de la contrainte de l’invariance lumineuse. Les expériences se feront avec la base de données de séquences d’images CDNET 2014. Pour obtenir les résultats numériques en terme de score F1, une combinaison sera faite par la suite entre la dynamique de supraconductivité et un méchanisme d’attention qui est un résumé des vérites de terrain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette recherche part du constat de l’utilisation des nouvelles technologies qui se généralise dans l’enseignement universitaire (tant sur campus qu’en enseignement à distance), et traite cette question sous trois aspects institutionnel, pédagogique et technologique. La recherche a été menée à travers quinze universités canadiennes où nous avons interrogé vingt-quatre universitaires, nommément des responsables de centres de pédagogie universitaire et des experts sur la question de l’intégration des technologies à l’enseignement universitaire. Pour le volet institutionnel, nous avons eu recours à un cadre théorique qui met en relief le changement de structure et de fonctionnement des universités à l’ère d’Internet, suivant le modèle théorique de l’Open System Communications Net de Kershaw et Safford (1998, 2001). Les résultats, à l’aune de ce modèle, confirment que les universités conventionnelles sont dans une phase de transformation due à l’utilisation des technologies de l'information et de la communication (TIC). De plus, les cours hybrides, la bimodalité, des universités entièrement à distance visant une clientèle estudiantine au-delà des frontières régionales et nationales, des universités associant plusieurs modèles, des universités fonctionnant à base d’intelligence artificielle, sont les modèles principaux qui ont la forte possibilité de s’imposer dans le paysage universitaire nord-américain au cours des prochaines décennies. Enfin, à la lumière du modèle théorique, nous avons exploré le rôle de l’université, ainsi en transformation, au sein de la société tout comme les rapports éventuels entre les institutions universitaires. S’agissant de l’aspect pédagogique, nous avons utilisé une perspective théorique fondée sur le modèle du Community of Inquiry (CoI) de Garrison, Anderson et Archer (2000), revu par Vaughan et Garrison (2005) et Garrison et Arbaugh (2007) qui prône notamment une nouvelle culture de travail à l’université fondée sur trois niveaux de présence. Les résultats indiquent l’importance d’éléments relatifs à la présence d’enseignement, à la présence cognitive et à la présence sociale, comme le suggère le modèle. Cependant, la récurrence -dans les trois niveaux de présence- de certains indicateurs, suggérés par les répondants, tels que l’échange d’information, la discussion et la collaboration, nous ont amenés à conclure à la non-étanchéité du modèle du CoI. De plus, certaines catégories, de par leur fréquence d’apparition dans les propos des interviewés, mériteraient d’avoir une considération plus grande dans les exigences pédagogiques que requiert le nouveau contexte prévalant dans les universités conventionnelles. C’est le cas par exemple de la catégorie « cohésion de groupe ». Enfin, dans le troisième volet de la recherche relatif à la dimension technologique, nous nous sommes inspirés du modèle théorique d’Olapiriyakul et Scher (2006) qui postule que l’infrastructure dans l’enseignement doit être à la fois une technologie pédagogique et une technologie d’apprentissage pour les étudiants (instructional technology and student learning technology). Partant de cette approche, le volet technologique de notre recherche a consisté à identifier les fonctionnalités exigées de la technologie pour induire une évolution institutionnelle et pédagogique. Les résultats à cet égard ont indiqué que les raisons pour lesquelles les universités choisissent d’intégrer les TIC à l’enseignement ne sont pas toujours d’ordre pédagogique, ce qui explique que la technologie elle-même ne revête pas forcément les qualités a priori requises pour une évolution pédagogique et institutionnelle. De ce constat, les technologies appropriées pour une réelle évolution pédagogique et institutionnelle des universités ont été identifiées.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.