30 resultados para vitamin D metabolism
Resumo:
Introduction: L'homéostasie du cholestérol est indispensable à la synthèse de la testostérone dans le tissu interstitiel et la production de gamètes mâles fertiles dans les tubules séminifères. Les facteurs enzymatiques contribuent au maintien de cet équilibre intracellulaire du cholestérol. L'absence d'un ou de plusieurs enzymes telles que la HMG-CoA réductase, la HSL et l'ACAT-1 a été associée à l'infertilité masculine. Toutefois, les facteurs enzymatiques qui contribuent au maintien de l'équilibre intra-tissulaire du cholestérol n'ont pas été étudiés. Cette étude a pour but de tester l'hypothèse que le maintien des taux de cholestérol compatibles avec la spermatogenèse nécessite une coordination de la fonction intracellulaire des enzymes HMG-CoA réductase, ACAT1 et ACAT2 et la HSL. Méthodes: Nous avons analysé l'expression de l’ARNm et de la protéine de ces enzymes dans les fractions enrichies en tubules séminifères (STf) de vison durant le développement postnatal et le cycle reproductif annuel et dans les fractions enrichies en tissu interstitiel (ITf) et de STf durant le développement postnatal chez la souris. Nous avons développé deux nouvelles techniques pour la mesure de l'activité enzymatique de la HMG-CoA réductase et de celle de l'ACAT1 et ACAT2. En outre, l'immunohistochimie a été utilisée pour localiser les enzymes dans le testicule. Enfin, les souris génétiquement déficientes en HSL, en SR-BI et en CD36 ont été utilisées pour élucider la contribution de la HMG-CoA réductase, l'ACAT1 et l'ACAT2 et la HSL à l'homéostasie du cholestérol. Résultats: 1) HMG-CoA réductase: (Vison) La variation du taux d’expression de l’ARNm de la HMG-CoA réductase était corrélée à celle de l'isoforme de 90 kDa de la protéine HMG-CoA réductase durant le développement postnatal et chez l'adulte durant le cycle reproductif saisonnier. L'activité enzymatique de la HMG-CoA réductase augmentait de façon concomitante avec le taux protéinique pour atteindre son niveau le plus élevé à 240 jours (3.6411e-7 mol/min/μg de protéines) au cours du développement et en Février (1.2132e-6 mol/min/μg de protéines) durant le cycle reproductif chez l’adulte. (Souris), Les niveaux d'expression de l'ARNm et l'activité enzymatique de la HMG-CoA réductase étaient maximales à 42 jours. A l'opposé, le taux protéinique diminuait au cours du développement. 2) HSL: (Vison), l'expression de la protéine de 90 kDa de la HSL était élevée à 180- et 240 jours après la naissance, ainsi qu'en Janvier durant le cycle saisonnier chez l'adulte. L'activité enzymatique de la HSL augmentait durant le développement pour atteindre un pic à 270 jours (36,45 nM/min/μg). Chez l'adulte, l'activité enzymatique de la HSL était maximale en Février. (Souris) Le niveau d’expression de l'ARNm de la HSL augmentait significativement à 21-, 28- et 35 jours après la naissance concomitamment avec le taux d'expression protéinique. L'activité enzymatique de la HSL était maximale à 42 jours suivie d'une baisse significative chez l'adulte. 3) ACAT-1 et ACAT-2: Le présent rapport est le premier à identifier l’expression de l'ACAT-1 et de l'ACAT-2 dans les STf de visons et de souris. (Vison) L'activité enzymatique de l'ACAT-2 était maximale à la complétion du développement à 270 jour (1190.00 CPMB/200 μg de protéines) et en janvier (2643 CPMB/200 μg de protéines) chez l'adulte. En revanche, l'activité enzymatique de l'ACAT-1 piquait à 90 jours et en août respectivement durant le développement et chez l'adulte. (Souris) Les niveaux d'expression de l'ARNm et la protéine de l'ACAT-1 diminuait au cours du développement. Le taux de l'ARNm de l'ACAT-2, à l’opposé du taux protéinique, augmentait au cours du développement. L'activité enzymatique de l'ACAT-1 diminuait au cours du développement tandis que celle de l'ACAT-2 augmentait pour atteindre son niveau maximal à 42 jours. 4) Souris HSL-/ -: Le taux d’expression de l'ARNm et l'activité enzymatique de la HMG-CoA réductase diminuaient significativement dans les STf de souris HSL-/- comparés aux souris HSL+/+. Par contre, les taux de l'ARNm et les niveaux des activités enzymatiques de l'ACAT-1 et de l'ACAT-2 étaient significativement plus élevés dans les STf de souris HSL-/- comparés aux souris HSL+/+ 5) Souris SR-BI-/-: L'expression de l'ARNm et l'activité enzymatique de la HMG-CoA réductase et de l'ACAT-1 étaient plus basses dans les STf de souris SR-BI-/- comparées aux souris SR-BI+/+. A l'opposé, le taux d'expression de l'ARNm et l'activité enzymatique de la HSL étaient augmentées chez les souris SR-BI-/- comparées aux souris SR-BI+/+. 6) Souris CD36-/-: L'expression de l'ARNm et l'activité enzymatique de la HMG-CoA réductase et de l'ACAT-2 étaient significativement plus faibles tandis que celles de la HSL et de l'ACAT-1 étaient inchangées dans les STf de souris CD36-/- comparées aux souris CD36+/+. Conclusion: Nos résultats suggèrent que: 1) L'activité enzymatique de la HMG-CoA réductase et de la HSL sont associées à l'activité spermatogénétique et que ces activités ne seraient pas régulées au niveau transcriptionnel. 2) L'ACAT-1 et de l'ACAT-2 sont exprimées dans des cellules différentes au sein des tubules séminifères, suggérant des fonctions distinctes pour ces deux isoformes: l'estérification du cholestérol libre dans les cellules germinales pour l'ACAT-1 et l'efflux du cholestérol en excès dans les cellules de Sertoli au cours de la spermatogenèse pour l'ACAT-2. 3) La suppression génétique de la HSL diminuait la HMG-CoA réductase et augmentait les deux isoformes de l'ACAT, suggérant que ces enzymes jouent un rôle critique dans le métabolisme du cholestérol intratubulaire. 4) La suppression génétique des transporteurs sélectifs de cholestérol SR-BI et CD36 affecte l'expression (ARNm et protéine) et l'activité des enzymes HMG-CoA réductase, HSL, ACAT-1 et ACAT-2, suggérant l'existence d’un effet compensatoire entre facteurs enzymatiques et non-enzymatiques du métabolisme du cholestérol dans les fractions tubulaires. Ensemble, les résultats de notre étude suggèrent que les enzymes impliquées dans la régulation du cholestérol intratubulaire agissent de concert avec les transporteurs sélectifs de cholestérol dans le but de maintenir l'homéostasie du cholestérol intra-tissulaire du testicule.
Resumo:
Le diabète est une maladie métabolique qui se caractérise par une résistance à l’insuline des tissus périphériques et par une incapacité des cellules β pancréatiques à sécréter les niveaux d’insuline appropriés afin de compenser pour cette résistance. Pour mieux comprendre les mécanismes déficients dans les cellules β des patients diabétiques, il est nécessaire de comprendre et de définir les mécanismes impliqués dans le contrôle de la sécrétion d’insuline en réponse au glucose. Dans les cellules β pancréatiques, le métabolisme du glucose conduit à la production de facteurs de couplage métabolique, comme l’ATP, nécessaires à la régulation de l’exocytose des vésicules d’insuline. Le mécanisme par lequel la production de l’ATP par le métabolisme oxydatif du glucose déclenche l’exocytose des vésicules d’insuline est bien décrit dans la littérature. Cependant, il ne peut à lui seul réguler adéquatement la sécrétion d’insuline. Le malonyl-CoA et le NADPH sont deux autres facteurs de couplage métaboliques qui ont été suggérés afin de relier le métabolisme du glucose à la régulation de la sécrétion d’insuline. Les mécanismes impliqués demeurent cependant à être caractérisés. Le but de la présente thèse était de déterminer l’implication des navettes du pyruvate, découlant du métabolisme mitochondrial du glucose, dans la régulation de la sécrétion d’insuline. Dans les cellules β, les navettes du pyruvate découlent de la combinaison des processus d’anaplérose et de cataplérose et permettent la transduction des signaux métaboliques provenant du métabolisme du glucose. Dans une première étude, nous nous sommes intéressés au rôle de la navette pyruvate/citrate dans la régulation de la sécrétion d’insuline en réponse au glucose, puisque cette navette conduit à la production dans le cytoplasme de deux facteurs de couplage métabolique, soit le malonyl-CoA et le NADPH. De plus, la navette pyruvate/citrate favorise le flux métabolique à travers la glycolyse en réoxydation le NADH. Une étude effectuée précédemment dans notre laboratoire avait suggéré la présence de cette navette dans les cellules β pancréatique. Afin de tester notre hypothèse, nous avons ciblé trois étapes de cette navette dans la lignée cellulaire β pancréatique INS 832/13, soit la sortie du citrate de la mitochondrie et l’activité de l’ATP-citrate lyase (ACL) et l’enzyme malique (MEc), deux enzymes clés de la navette pyruvate/citrate. L’inhibition de chacune de ces étapes par l’utilisation d’un inhibiteur pharmacologique ou de la technologie des ARN interférant a corrélé avec une réduction significative de la sécrétion d’insuline en réponse au glucose. Les résultats obtenus suggèrent que la navette pyruvate/citrate joue un rôle critique dans la régulation de la sécrétion d’insuline en réponse au glucose. Parallèlement à notre étude, deux autres groupes de recherche ont suggéré que les navettes pyruvate/malate et pyruvate/isocitrate/α-cétoglutarate étaient aussi importantes pour la sécrétion d’insuline en réponse au glucose. Ainsi, trois navettes découlant du métabolisme mitochondrial du glucose pourraient être impliquées dans le contrôle de la sécrétion d’insuline. Le point commun de ces trois navettes est la production dans le cytoplasme du NADPH, un facteur de couplage métabolique possiblement très important pour la sécrétion d’insuline. Dans les navettes pyruvate/malate et pyruvate/citrate, le NADPH est formé par MEc, alors que l’isocitrate déshydrogénase (IDHc) est responsable de la production du NADPH dans la navette pyruvate/isocitrate/α-cétoglutarate. Dans notre première étude, nous avions démontré l’importance de l’expression de ME pour la sécrétion adéquate d’insuline en réponse au glucose. Dans notre deuxième étude, nous avons testé l’implication de IDHc dans les mécanismes de régulation de la sécrétion d’insuline en réponse au glucose. La diminution de l’expression de IDHc dans les INS 832/13 a stimulé la sécrétion d’insuline en réponse au glucose par un mécanisme indépendant de la production de l’ATP par le métabolisme oxydatif du glucose. Ce résultat a ensuite été confirmé dans les cellules dispersées des îlots pancréatiques de rat. Nous avons aussi observé dans notre modèle que l’incorporation du glucose en acides gras était augmentée, suggérant que la diminution de l’activité de IDHc favorise la redirection du métabolisme de l’isocitrate à travers la navette pyruvate/citrate. Un mécanisme de compensation à travers la navette pyruvate/citrate pourrait ainsi expliquer la stimulation de la sécrétion d’insuline observée en réponse à la diminution de l’expression de IDHc. Les travaux effectués dans cette deuxième étude remettent en question l’implication de l’activité de IDHc, et de la navette pyruvate/isocitrate/α-cétoglutarate, dans la transduction des signaux métaboliques reliant le métabolisme du glucose à la sécrétion d’insuline. La navette pyruvate/citrate est la seule des navettes du pyruvate à conduire à la production du malonyl-CoA dans le cytoplasme des cellules β. Le malonyl-CoA régule le métabolisme des acides gras en inhibant la carnitine palmitoyl transférase 1, l’enzyme limitante dans l’oxydation des acides gras. Ainsi, l’élévation des niveaux de malonyl-CoA en réponse au glucose entraîne une redirection du métabolisme des acides gras vers les processus d’estérification puis de lipolyse. Plus précisément, les acides gras sont métabolisés à travers le cycle des triglycérides/acides gras libres (qui combinent les voies métaboliques d’estérification et de lipolyse), afin de produire des molécules lipidiques signalétiques nécessaires à la modulation de la sécrétion d’insuline. Des études effectuées précédemment dans notre laboratoire ont démontré que l’activité lipolytique de HSL (de l’anglais hormone-sensitive lipase) était importante, mais non suffisante, pour la régulation de la sécrétion d’insuline. Dans une étude complémentaire, nous nous sommes intéressés au rôle d’une autre lipase, soit ATGL (de l’anglais adipose triglyceride lipase), dans la régulation de la sécrétion d’insuline en réponse au glucose et aux acides gras. Nous avons démontré que ATGL est exprimé dans les cellules β pancréatiques et que son activité contribue significativement à la lipolyse. Une réduction de son expression dans les cellules INS 832/13 par RNA interférant ou son absence dans les îlots pancréatiques de souris déficientes en ATGL a conduit à une réduction de la sécrétion d’insuline en réponse au glucose en présence ou en absence d’acides gras. Ces résultats appuient l’hypothèse que la lipolyse est une composante importante de la régulation de la sécrétion d’insuline dans les cellules β pancréatiques. En conclusion, les résultats obtenus dans cette thèse suggèrent que la navette pyruvate/citrate est importante pour la régulation de la sécrétion d’insuline en réponse au glucose. Ce mécanisme impliquerait la production du NADPH et du malonyl-CoA dans le cytoplasme en fonction du métabolisme du glucose. Cependant, nos travaux remettent en question l’implication de la navette pyruvate/isocitrate/α-cétoglutarate dans la régulation de la sécrétion d’insuline. Le rôle exact de IDHc dans ce processus demeure cependant à être déterminé. Finalement, nos travaux ont aussi démontré un rôle pour ATGL et la lipolyse dans les mécanismes de couplage métabolique régulant la sécrétion d’insuline.
Resumo:
L'exposition à la lumière des solutions de nutrition parentérale (NP) génère des peroxydes tels que l'H2O2 et l'ascorbylperoxyde (AscOOH). Cette absence de photo-protection provoque une augmentation des triglycérides (TG) plasmatique chez les enfants prématurés et chez un modèle animal, ayant un stress oxydatif et une stéatose hépatique indépendante de l’exposition au H2O2. Nous pensons que l'AscOOH est l'agent actif conduisant à l'élévation des TG. Le but est d'investiguer le rôle de l'AscOOH sur les métabolismes du glucose et des lipides à l'aide d'un modèle animal néonatal de NP.
Resumo:
L’apoptose est une forme de mort cellulaire essentielle au développement et au maintien de l’homéostase chez les animaux multicellulaires. La machinerie apoptotiq ue requiert la participation des caspases, des protéases conservées dans l’évolution et celle des organelles cytoplasmiques. Les lysosomes subissent des ruptures partielles, labilisation de la membrane lysosomale (LML), qui entraînent l’activation des cathepsines dans le cytoplasme de cellules cancéreuses humaines en apoptose induite par la camptothecin (CPT), incluant les histiocytes humains U-937. Ces modifications lysosomales se manifestent tôt durant l’activation de l’apoptose, concomitamment avec la perméabilisation de la mitochondrie et l’activation des caspases. Une étude protéomique quantitative et comparative a permis d’identifier des changements précoces dans l’expression/localisation de protéines lysosomales de cellules U-937 en apoptose. Lors de deux expériences indépendantes, sur plus de 538 protéines lysosomales identifiées et quantifiées grâce au marquage isobarique iTRAQ et LC-ESIMS/ MS, 18 protéines augmentent et 9 diminuent dans les lysosomes purifiés de cellules en cours d’apoptose comparativement aux cellules contrôles. Les candidats validés par immuno-buvardage et microscopie confocale incluent le stérol-4-alpha-carboxylate 3- déhydrogénase, le prosaposin et la protéine kinase C delta (PKC-d). Des expériences fonctionnelles ont démontrées que la translocation de PKC-d aux lysosomes est requise pour la LML puisque la réduction de son expression par ARN interférents ou l’inhibition de son activité à l’aide du rottlerin empêche la LML lors de l’apoptose induite par la CPT. La translocation de PKC-d aux lysosomes conduit à la phosphorylation et l’activation de la sphingomyelinase acide lysosomale (ASM), et à l’accroissement subséquent du contenu en céramide (CER) à la membrane lysosomale. Cette accumulation de CER endogène aux lysosomes est un évènement critique pour la LML induite par la CPT car l’inhibition de l’activité de PKC-d ou de ASM diminue la formation de CER et la LML.Ces résultats révèlent un nouveau mécanisme par lequel la PKC-d active l’ASM qui conduit à son tour à l’accumulation de CER à la membrane lysosomale et déclenche la LML et l’activation de la voie lysosomale de l’apoptose induite par la CPT. En somme, ce mécanisme confirme l’importance du métabolisme des sphingolipides dans l’activation de la voie lysosomale de l’apoptose.
Resumo:
Des études précédentes ont montré qu’une carence en vitamine E prédispose à la myopathie du poulet de chair. L’effet d’un ajout de vitamine E dans la diète commerciale sur la dégénérescence des fibres musculaires de la poitrine et de la cuisse a été étudié chez les poulets de chair. Des poulets mâles ROSS 308 (n = 1100) ont été assignés de façon aléatoire à deux traitements alimentaires (aliment commercial + 25 à 50 mg de vitamine E surajouté par kg vs aliment commercial + 0 mg de vitamine E supplémentaire). Les poulets ont été répartis sur 10 parquets (cinq répétitions par traitement). Le poids corporel et la consommation d’aliment ont été mesurés hebdomadairement. Aux jours j28, j35, j42 et j49, du sang a été prélevé pour mesurer le niveau de vitamine E et l’activité de la créatine kinase (CK). Les muscles Pectoralis superficialis et Adductor magnus ont été prélevés pour des analyses histologiques aux jours j28, j42 et j49; les fibres dégénérées ont été dénombrées sur chaque muscle prélevé. La concentration plasmatique de vitamine E était plus élevée dans le groupe supplémenté (P = 0.001). L’activité de la CK n’était pas différente dans les deux groupes (P = 0.20) mais très élevée, et n’était pas toujours en relation avec les dommages musculaires, à cause de grandes fluctuations de la CK entre les individus du même groupe. Le nombre de fibres endommagées était plus élevé dans le muscle Pectoralis superficialis (poitrine) que dans le muscle Adductor magnus (cuisse) dans les deux groupes; il y avait aussi moins de fibres dégénérées à j28 dans la poitrine des poulets qui ont reçus la diète supplémentée. Ces résultats suggèrent que l’ajout de vitamine E à la diète conventionnelle augmente le niveau de vitamine E dans le plasma et dans les tissus, diminue le nombre de fibres dégénérées dans la poitrine des jeunes poulets sans pour autant modifier la conversion alimentaire. La mesure de l’activité plasmatique de la CK ne saurait suffire à elle seule pour détecter précocement la myopathie nutritionnelle dans les élevages de poulets de chair.
Resumo:
Les sécrétines de l’hormone de croissance (GHRPs) sont de petits peptides synthétiques capables de stimuler la sécrétion de l’hormone de croissance à partir de l’hypophyse via leur liaison au récepteur de la ghréline GHS-R1a. Le GHRP hexaréline a été utilisé afin d’étudier la distribution tissulaire de GHS-R1a et son effet GH-indépendant. Ainsi, par cette approche, il a été déterminé que l’hexaréline était capable de se lier à un deuxième récepteur identifié comme étant le récepteur scavenger CD36. Ce récepteur possède une multitude de ligands dont les particules oxLDL et les acides gras à longue chaîne. CD36 est généralement reconnu pour son rôle dans l’athérogénèse et sa contribution à la formation de cellules spumeuses suite à l’internalisation des oxLDL dans les macrophages/monocytes. Auparavant, nous avions démontré que le traitement des macrophages avec l’hexaréline menait à l’activation de PPARƔ via sa liaison à GHS-R1a, mais aussi à CD36. De plus, une cascade d’activation impliquant LXRα et les transporteurs ABC provoquait également une augmentation de l’efflux du cholestérol. Une stimulation de la voie du transport inverse du cholestérol vers les particules HDL entraînait donc une diminution de l’engorgement des macrophages de lipides et la formation de cellules spumeuses. Puisque CD36 est exprimé dans de multiples tissus et qu’il est également responsable du captage des acides gras à longue chaîne, nous avons voulu étudier l’impact de l’hexaréline uniquement à travers sa liaison à CD36. Dans le but d’approfondir nos connaissances sur la régulation du métabolisme des lipides par CD36, nous avons choisi des types cellulaires jouant un rôle important dans l’homéostasie lipidique n’exprimant pas GHS-R1a, soient les adipocytes et les hépatocytes. L’ensemble de mes travaux démontre qu’en réponse à son interaction avec l’hexaréline, CD36 a le potentiel de réduire le contenu lipidique des adipocytes et des hépatocytes. Dans les cellules adipeuses, l'hexaréline augmente l’expression de plusieurs gènes impliqués dans la mobilisation et l’oxydation des acides gras, et induit également l’expression des marqueurs thermogéniques PGC-1α et UCP-1. De même, hexaréline augmente l’expression des gènes impliqués dans la biogenèse mitochondriale, un effet accompagné de changements morphologiques des mitochondries; des caractéristiques observées dans les types cellulaires ayant une grande capacité oxydative. Ces résultats démontrent que les adipocytes blancs traités avec hexaréline ont la capacité de se transformer en un phénotype similaire aux adipocytes bruns ayant l’habileté de brûler les acides gras plutôt que de les emmagasiner. Cet effet est également observé dans les tissus adipeux de souris et est dépendant de la présence de CD36. Dans les hépatocytes, nous avons démontré le potentiel de CD36 à moduler le métabolisme du cholestérol. En réponse au traitement des cellules avec hexaréline, une phosphorylation rapide de LKB1 et de l’AMPK est suivie d’une phosphorylation inhibitrice de l’HMG-CoA réductase (HMGR), l’enzyme clé dans la synthèse du cholestérol. De plus, la liaison d'hexaréline à CD36 provoque le recrutement d’insig-2 à HMGR, l’étape d’engagement dans sa dégradation. La dégradation de HMGR par hexaréline semble être dépendante de l’activité de PPARƔ et de l’AMPK. Dans le but d’élucider le mécanisme d’activation par hexaréline, nous avons démontré d’une part que sa liaison à CD36 provoque une déphosphorylation de Erk soulevant ainsi l’inhibition que celui-ci exerce sur PPARƔ et d’autre part, un recrutement de l’AMPK à PGC-1α expliquant ainsi une partie du mécanisme d’activation de PPARƔ par hexaréline. Les résultats générés dans cette thèse ont permis d’élucider de nouveaux mécanismes d’action de CD36 et d'approfondir nos connaissances de son influence dans la régulation du métabolisme des lipides.
Resumo:
Réalisé en cotutelle avec le Dr James G Martin de l'Université McGill (Meakins-Christie laboratories)
Resumo:
Le diabète est une maladie chronique de l’homéostasie du glucose caractérisée par une hyperglycémie non contrôlée qui est le résultat d’une défaillance de la sécrétion d’insuline en combinaison ou non avec une altération de l’action de l’insuline. La surnutrition et le manque d’activité physique chez des individus qui ont des prédispositions génétiques donnent lieu à la résistance à l’insuline. Pendant cette période dite de compensation où la concentration d’acides gras plasmatiques est élevée, l’hyperinsulinémie compense pleinement pour la résistance à l’insuline des tissus cibles et la glycémie est normale. Le métabolisme du glucose par la cellule pancréatique bêta entraîne la sécrétion d’insuline. Selon le modèle classique de la sécrétion d’insuline induite par le glucose, l’augmentation du ratio ATP/ADP résultant de la glycolyse et de l’oxydation du glucose, induit la fermeture des canaux KATP-dépendant modifiant ainsi le potentiel membranaire suivi d’un influx de Ca2+. Cet influx de Ca2+ permet l’exocytose des granules de sécrétion contenant l’insuline. Plusieurs nutriments comme les acides gras sont capables de potentialiser la sécrétion d’insuline. Cependant, le modèle classique ne permet pas d’expliquer cette potentialisation de la sécrétion d’insuline par les acides gras. Pour expliquer l’effet potentialisateur des acides gras, notre laboratoire a proposé un modèle complémentaire où le malonyl-CoA dérivé du métabolisme anaplérotique du glucose inhibe la carnitine palmitoyltransférase-1, l’enzyme qui constitue l’étape limitante de l’oxydation des acides gras favorisant ainsi leur estérification et donc la formation de dérivés lipidiques signalétiques. Le modèle anaplérotique/lipidique de la sécrétion d'insuline induite par le glucose prédit que le malonyl-CoA dérivé du métabolisme du glucose inhibe la bêta-oxydation des acides gras et augmente la disponibilité des acyl-CoA ou des acides gras non-estérifiés. Les molécules lipidiques agissant comme facteurs de couplage du métabolisme des acides gras à l'exocytose d'insuline sont encore inconnus. Des travaux réalisés par notre laboratoire ont démontré qu’en augmentant la répartition des acides gras vers la bêta-oxydation, la sécrétion d’insuline induite par le glucose était réduite suggérant qu’un des dérivés de l’estérification des acides gras est important pour la potentialisation sur la sécrétion d’insuline. En effet, à des concentrations élevées de glucose, les acides gras peuvent être estérifiés d’abord en acide lysophosphatidique (LPA), en acide phosphatidique (PA) et en diacylglycérol (DAG) et subséquemment en triglycérides (TG). La présente étude a établi l’importance relative du processus d’estérification des acides gras dans la production de facteurs potentialisant la sécrétion d’insuline. Nous avions émis l’hypothèse que des molécules dérivées des processus d’estérification des acides gras (ex : l’acide lysophosphatidique (LPA) et le diacylglycerol (DAG)) agissent comme signaux métaboliques et sont responsables de la modulation de la sécrétion d’insuline en présence d’acides gras. Afin de vérifier celle-ci, nous avons modifié le niveau d’expression des enzymes clés contrôlant le processus d’estérification par des approches de biologie moléculaire afin de changer la répartition des acides gras dans la cellule bêta. L’expression des différents isoformes de la glycérol-3-phosphate acyltransférase (GPAT), qui catalyse la première étape d’estérification des acides gras a été augmenté et inhibé. Les effets de la modulation de l’expression des isoenzymes de GPAT sur les processus d’estérifications, sur la bêta-oxydation et sur la sécrétion d’insuline induite par le glucose ont été étudiés. Les différentes approches que nous avons utilisées ont changé les niveaux de DAG et de TG sans toutefois altérer la sécrétion d’insuline induite par le glucose. Ainsi, les résultats de cette étude n’ont pas associé de rôle pour l’estérification de novo des acides gras dans leur potentialisation de la sécrétion d’insuline. Cependant, l’estérification des acides gras fait partie intégrante d’un cycle de TG/acides gras avec sa contrepartie lipolytique. D’ailleurs, des études parallèles à la mienne menées par des collègues du laboratoire ont démontré un rôle pour la lipolyse et un cycle TG/acides gras dans la potentialisation de la sécrétion d’insuline par les acides gras. Parallèlement à nos études des mécanismes de la sécrétion d’insuline impliquant les acides gras, notre laboratoire s’intéresse aussi aux effets négatifs des acides gras sur la cellule bêta. La glucolipotoxicité, résultant d’une exposition chronique aux acides gras saturés en présence d’une concentration élevée de glucose, est d’un intérêt particulier vu la prépondérance de l’obésité. L’isoforme microsomal de GPAT a aussi utilisé comme outil moléculaire dans le contexte de la glucolipotoxicité afin d’étudier le rôle de la synthèse de novo de lipides complexes dans le contexte de décompensation où la fonction des cellules bêta diminue. La surexpression de l’isoforme microsomal de la GPAT, menant à l’augmentation de l’estérification des acides gras et à une diminution de la bêta-oxydation, nous permet de conclure que cette modification métabolique est instrumentale dans la glucolipotoxicité.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le diabète de type 2 (DT2) est une maladie métabolique complexe causée par des facteurs génétiques mais aussi environnementaux, tels la sédentarité et le surpoids. La dysfonction de la cellule β pancréatique est maintenant reconnue comme l’élément déterminant dans le développement du DT2. Notre laboratoire s’intéresse à la sécrétion d’insuline par la cellule β en réponse aux nutriments calorigéniques et aux mécanismes qui la contrôle. Alors que la connaissance des mécanismes responsables de l’induction de la sécrétion d’insuline en réponse aux glucose et acides gras est assez avancée, les procédés d’inhibition de la sécrétion dans des contextes normaux ou pathologiques sont moins bien compris. L’objectif de la présente thèse était d’identifier quelques-uns de ces mécanismes de régulation négative de la sécrétion d’insuline dans la cellule β pancréatique, et ce en situation normale ou pathologique en lien avec le DT2. La première hypothèse testée était que l’enzyme mitochondriale hydroxyacyl-CoA déshydrogénase spécifique pour les molécules à chaîne courte (short-chain hydroxyacyl-CoA dehydrogenase, SCHAD) régule la sécrétion d’insuline induite par le glucose (SIIG) par la modulation des concentrations d’acides gras ou leur dérivés tels les acyl-CoA ou acyl-carnitine dans la cellule β. Pour ce faire, nous avons utilisé la technologie des ARN interférants (ARNi) afin de diminuer l’expression de SCHAD dans la lignée cellulaire β pancréatique INS832/13. Nous avons par la suite vérifié chez la souris DIO (diet-induced obesity) si une exposition prolongée à une diète riche en gras activerait certaines voies métaboliques et signalétiques assurant une régulation négative de la sécrétion d’insuline et contribuerait au développement du DT2. Pour ce faire, nous avons mesuré la SIIG, le métabolisme intracellulaire des lipides, la fonction mitochondriale et l’activation de certaines voies signalétiques dans les îlots de Langerhans isolés des souris normales (ND, normal diet) ou nourries à la dière riche en gras (DIO) Nos résultats suggèrent que l’enzyme SCHAD est importante dans l’atténuation de la sécrétion d’insuline induite par le glucose et les acides aminés. En effet, l’oxydation des acides gras par la protéine SCHAD préviendrait l’accumulation d’acyl-CoA ou de leurs dérivés carnitine à chaîne courtes potentialisatrices de la sécrétion d’insuline. De plus, SCHAD régule le métabolisme du glutamate par l’inhibition allostérique de l’enzyme glutamate déshydrogénase (GDH), prévenant ainsi une hyperinsulinémie causée par une sur-activité de GDH. L’étude de la dysfonction de la cellule β dans le modèle de souris DIO a démontré qu’il existe une grande hétérogénéité dans l’obésité et l’hyperglycémie développées suite à la diète riche en gras. L’orginialité de notre étude réside dans la stratification des souris DIO en deux groupes : les faibles et forts répondants à la diète (low diet responders (LDR) et high diet responder (HDR)) sur la base de leur gain de poids corporel. Nous avons mis en lumières divers mécanismes liés au métabolisme des acides gras impliqués dans la diminution de la SIIG. Une diminution du flux à travers le cycle TG/FFA accompagnée d’une augmentation de l’oxydation des acides gras et d’une accumulation intracellulaire de cholestérol contribuent à la diminution de la SIIG chez les souris DIO-HDR. De plus, l’altération de la signalisation par les voies AMPK (AMP-activated protein kinase) et PKC epsilon (protéine kinase C epsilon) pourrait expliquer certaines de ces modifications du métabolisme des îlots DIO et causer le défaut de sécrétion d’insuline. En résumé, nous avons mis en lumière des mécanismes importants pour la régulation négative de la sécrétion d’insuline dans la cellule β pancréatique saine ou en situation pathologique. Ces mécanismes pourraient permettre d’une part de limiter l’amplitude ou la durée de la sécrétion d’insuline suite à un repas chez la cellule saine, et d’autre part de préserver la fonction de la cellule β en retardant l’épuisement de celle-ci en situation pathologique. Certaines de ces voies peuvent expliquer l’altération de la sécrétion d’insuline dans le cadre du DT2 lié à l’obésité. À la lumière de nos recherches, le développement de thérapies ayant pour cible les mécanismes de régulation négative de la sécrétion d’insuline pourrait être bénéfique pour le traitement de patients diabétiques.
Resumo:
Mild hypothermia has a protective effect on brain edema and encephalopathy in both experimental and human acute liver failure. The goals of the present study were to examine the effects of mild hypothermia (35°C) on brain metabolic pathways using combined 1H and 13C-Nuclear Magnetic Resonance (NMR) spectroscopy, a technique which allows the study not only of metabolite concentrations but also their de novo synthesis via cell-specific pathways in the brain. :1H and 13C NMR spectroscopy using [1-13C] glucose was performed on extracts of frontal cortex obtained from groups of rats with acute liver failure induced by hepatic devascularization whose body temperature was maintained either at 37°C (normothermic) or 35°C (hypothermic), and appropriate sham-operated controls. At coma stages of encephalopathy in the normothermic acute liver failure animals, glutamine concentrations in frontal cortex increased 3.5-fold compared to sham-operated controls (P < 0.001). Comparable increases of brain glutamine were observed in hypothermic animals despite the absence of severe encephalopathy (coma). Brain glutamate and aspartate concentrations were respectively decreased to 60.9% ± 7.7% and 42.2% ± 5.9% (P < 0.01) in normothermic animals with acute liver failure compared to control and were restored to normal values by mild hypothermia. Concentrations of lactate and alanine in frontal cortex were increased to 169.2% ± 15.6% and 267.3% ± 34.0% (P < 0.01) respectively in normothermic rats compared to controls. Furthermore, de novo synthesis of lactate and alanine increased to 446.5% ± 48.7% and 707.9% ± 65.7% (P < 0.001), of control respectively, resulting in increased fractional 13C-enrichments in these cytosolic metabolites. Again, these changes of lactate and alanine concentrations were prevented by mild hypothermia. Mild hypothermia (35°C) prevents the encephalopathy and brain edema resulting from hepatic devascularization, selectively normalizes lactate and alanine synthesis from glucose, and prevents the impairment of oxidative metabolism associated with this model of ALF, but has no significant effect on brain glutamine. These findings suggest that a deficit in brain glucose metabolism rather than glutamine accumulation is the major cause of the cerebral complications of acute liver failure.
Resumo:
Le surenroulement de l’ADN est important pour tous les processus cellulaires qui requièrent la séparation des brins de l’ADN. Il est régulé par l’activité enzymatique des topoisomérases. La gyrase (gyrA et gyrB) utilise l’ATP pour introduire des supertours négatifs dans l’ADN, alors que la topoisomérase I (topA) et la topoisomérase IV (parC et parE) les éliminent. Les cellules déficientes pour la topoisomérase I sont viables si elles ont des mutations compensatoires dans un des gènes codant pour une sous-unité de la gyrase. Ces mutations réduisent le niveau de surenroulement négatif du chromosome et permettent la croissance bactérienne. Une de ces mutations engendre la production d'une gyrase thermosensible. L’activité de surenroulement de la gyrase en absence de la topoisomérase I cause l’accumulation d’ADN hyper-surenroulé négativement à cause de la formation de R-loops. La surproduction de la RNase HI (rnhA), une enzyme qui dégrade l’ARN des R-loops, permet de prévenir l’accumulation d’un excès de surenroulement négatif. En absence de RNase HI, des R-loops sont aussi formés et peuvent être utilisés pour déclencher la réplication de l’ADN indépendamment du système normal oriC/DnaA, un phénomène connu sous le nom de « constitutive stable DNA replication » (cSDR). Pour mieux comprendre le lien entre la formation de R-loops et l’excès de surenroulement négatif, nous avons construit un mutant conditionnel topA rnhA gyrB(Ts) avec l’expression inductible de la RNase HI à partir d’un plasmide. Nous avons trouvé que l’ADN des cellules de ce mutant était excessivement relâché au lieu d'être hypersurenroulé négativement en conditions de pénurie de RNase HI. La relaxation de l’ADN a été montrée comme étant indépendante de l'activité de la topoisomérase IV. Les cellules du triple mutant topA rnhA gyrB(Ts) forment de très longs filaments remplis d’ADN, montrant ainsi un défaut de ségrégation des chromosomes. La surproduction de la topoisomérase III (topB), une enzyme qui peut effectuer la décaténation de l’ADN, a corrigé les problèmes de ségrégation sans toutefois restaurer le niveau de surenroulement de l’ADN. Nous avons constaté que des extraits protéiques du mutant topA rnhA gyrB(Ts) pouvaient inhiber l’activité de surenroulement négatif de la gyrase dans des extraits d’une souche sauvage, suggérant ainsi que la pénurie de RNase HI avait déclenché une réponse cellulaire d’inhibition de cette activité de la gyrase. De plus, des expériences in vivo et in vitro ont montré qu’en absence de RNase HI, l’activité ATP-dépendante de surenroulement négatif de la gyrase était inhibée, alors que l’activité ATP-indépendante de cette enzyme demeurait intacte. Des suppresseurs extragéniques du défaut de croissance du triple mutant topA rnhA gyrB(Ts) qui corrigent également les problèmes de surenroulement et de ségrégation des chromosomes ont pour la plupart été cartographiés dans des gènes impliqués dans la réplication de l’ADN, le métabolisme des R-loops, ou la formation de fimbriae. La deuxième partie de ce projet avait pour but de comprendre les rôles des topoisomérases de type IA (topoisomérase I et topoisomérase III) dans la ségrégation et la stabilité du génome de Escherichia coli. Pour étudier ces rôles, nous avons utilisé des approches de génétique combinées avec la cytométrie en flux, l’analyse de type Western blot et la microscopie. Nous avons constaté que le phénotype Par- et les défauts de ségrégation des chromosomes d’un mutant gyrB(Ts) avaient été corrigés en inactivant topA, mais uniquement en présence du gène topB. En outre, nous avons démontré que la surproduction de la topoisomérase III pouvait corriger le phénotype Par- du mutant gyrB(Ts) sans toutefois corriger les défauts de croissance de ce dernier. La surproduction de topoisomérase IV, enzyme responsable de la décaténation des chromosomes chez E. coli, ne pouvait pas remplacer la topoisomérase III. Nos résultats suggèrent que les topoisomérases de type IA jouent un rôle important dans la ségrégation des chromosomes lorsque la gyrase est inefficace. Pour étudier le rôle des topoisomérases de type IA dans la stabilité du génome, la troisième partie du projet, nous avons utilisé des approches génétiques combinées avec des tests de « spot » et la microscopie. Nous avons constaté que les cellules déficientes en topoisomérase I avaient des défauts de ségrégation de chromosomes et de croissance liés à un excès de surenroulement négatif, et que ces défauts pouvaient être corrigés en inactivant recQ, recA ou par la surproduction de la topoisomérase III. Le suppresseur extragénique oriC15::aph isolé dans la première partie du projet pouvait également corriger ces problèmes. Les cellules déficientes en topoisomérases de type IA formaient des très longs filaments remplis d’ADN d’apparence diffuse et réparti inégalement dans la cellule. Ces phénotypes pouvaient être partiellement corrigés par la surproduction de la RNase HI ou en inactivant recA, ou encore par des suppresseurs isolés dans la première partie du projet et impliques dans le cSDR (dnaT18::aph et rne59::aph). Donc, dans E. coli, les topoisomérases de type IA jouent un rôle dans la stabilité du génome en inhibant la réplication inappropriée à partir de oriC et de R-loops, et en empêchant les défauts de ségrégation liés à la recombinaison RecA-dépendante, par leur action avec RecQ. Les travaux rapportés ici révèlent que la réplication inappropriée et dérégulée est une source majeure de l’instabilité génomique. Empêcher la réplication inappropriée permet la ségrégation des chromosomes et le maintien d’un génome stable. La RNase HI et les topoisomérases de type IA jouent un rôle majeur dans la prévention de la réplication inappropriée. La RNase HI réalise cette tâche en modulant l’activité de surenroulement ATP-dependante de la gyrase, et en empêchant la réplication à partir des R-loops. Les topoisomérases de type IA assurent le maintien de la stabilité du génome en empêchant la réplication inappropriée à partir de oriC et des R-loops et en agissant avec RecQ pour résoudre des intermédiaires de recombinaison RecA-dépendants afin de permettre la ségrégation des chromosomes.
Resumo:
On retrouve dans le complexe Chrosomus eos-neogaeus une forme cybride ayant le génome nucléaire de C. eos et le génome mitochondrial de C. neogaeus. Ce modèle particulier fournit une occasion unique d’étudier l’influence d’une mitochondrie exogène sur le métabolisme et la physiologie d'organismes vivant en milieu naturel, et s'étant donc adaptés à cette situation cellulaire atypique. La mitochondrie jouant un rôle fondamental vital, nous nous attendons à ce que la présence d’une mitochondrie exogène chez la forme cybride ait un impact sur l’expression de son génome et du protéome qui en découle. L’objectif de ce projet est d’étudier les différences au niveau protéomique entre des individus C. eos purs (forme sauvage) et des cybrides provenant d'habitats similaires afin de faire ressortir au maximum les différences dues à la présence de mitochondries C. neogaeus chez la forme cybride. Pour ce faire, nous avons comparé les protéomes des formes cybride et sauvage en utilisant l'électrophorèse en deux dimensions. Un sous-groupe de protéines produisant un signal spécifique révélé par l’analyse comparative a été identifié et analysé par spectrométrie de masse (LC/MS). Les résultats indiquent que la présence de mitochondries C. neogaeus chez le cybride influence fortement la régulation génique chez ce dernier. De plus, les protéines identifiées apportent des pistes intéressantes supportant l'hypothèse que la présence de mitochondries C. neogaeus chez le cybride rendrait ce biotype plus résistant au froid que la forme sauvage.
Resumo:
La tomographie d’émission par positrons (TEP) est une modalité d’imagerie moléculaire utilisant des radiotraceurs marqués par des isotopes émetteurs de positrons permettant de quantifier et de sonder des processus biologiques et physiologiques. Cette modalité est surtout utilisée actuellement en oncologie, mais elle est aussi utilisée de plus en plus en cardiologie, en neurologie et en pharmacologie. En fait, c’est une modalité qui est intrinsèquement capable d’offrir avec une meilleure sensibilité des informations fonctionnelles sur le métabolisme cellulaire. Les limites de cette modalité sont surtout la faible résolution spatiale et le manque d’exactitude de la quantification. Par ailleurs, afin de dépasser ces limites qui constituent un obstacle pour élargir le champ des applications cliniques de la TEP, les nouveaux systèmes d’acquisition sont équipés d’un grand nombre de petits détecteurs ayant des meilleures performances de détection. La reconstruction de l’image se fait en utilisant les algorithmes stochastiques itératifs mieux adaptés aux acquisitions à faibles statistiques. De ce fait, le temps de reconstruction est devenu trop long pour une utilisation en milieu clinique. Ainsi, pour réduire ce temps, on les données d’acquisition sont compressées et des versions accélérées d’algorithmes stochastiques itératifs qui sont généralement moins exactes sont utilisées. Les performances améliorées par l’augmentation de nombre des détecteurs sont donc limitées par les contraintes de temps de calcul. Afin de sortir de cette boucle et permettre l’utilisation des algorithmes de reconstruction robustes, de nombreux travaux ont été effectués pour accélérer ces algorithmes sur les dispositifs GPU (Graphics Processing Units) de calcul haute performance. Dans ce travail, nous avons rejoint cet effort de la communauté scientifique pour développer et introduire en clinique l’utilisation des algorithmes de reconstruction puissants qui améliorent la résolution spatiale et l’exactitude de la quantification en TEP. Nous avons d’abord travaillé sur le développement des stratégies pour accélérer sur les dispositifs GPU la reconstruction des images TEP à partir des données d’acquisition en mode liste. En fait, le mode liste offre de nombreux avantages par rapport à la reconstruction à partir des sinogrammes, entre autres : il permet d’implanter facilement et avec précision la correction du mouvement et le temps de vol (TOF : Time-Of Flight) pour améliorer l’exactitude de la quantification. Il permet aussi d’utiliser les fonctions de bases spatio-temporelles pour effectuer la reconstruction 4D afin d’estimer les paramètres cinétiques des métabolismes avec exactitude. Cependant, d’une part, l’utilisation de ce mode est très limitée en clinique, et d’autre part, il est surtout utilisé pour estimer la valeur normalisée de captation SUV qui est une grandeur semi-quantitative limitant le caractère fonctionnel de la TEP. Nos contributions sont les suivantes : - Le développement d’une nouvelle stratégie visant à accélérer sur les dispositifs GPU l’algorithme 3D LM-OSEM (List Mode Ordered-Subset Expectation-Maximization), y compris le calcul de la matrice de sensibilité intégrant les facteurs d’atténuation du patient et les coefficients de normalisation des détecteurs. Le temps de calcul obtenu est non seulement compatible avec une utilisation clinique des algorithmes 3D LM-OSEM, mais il permet également d’envisager des reconstructions rapides pour les applications TEP avancées telles que les études dynamiques en temps réel et des reconstructions d’images paramétriques à partir des données d’acquisitions directement. - Le développement et l’implantation sur GPU de l’approche Multigrilles/Multitrames pour accélérer l’algorithme LMEM (List-Mode Expectation-Maximization). L’objectif est de développer une nouvelle stratégie pour accélérer l’algorithme de référence LMEM qui est un algorithme convergent et puissant, mais qui a l’inconvénient de converger très lentement. Les résultats obtenus permettent d’entrevoir des reconstructions en temps quasi-réel que ce soit pour les examens utilisant un grand nombre de données d’acquisition aussi bien que pour les acquisitions dynamiques synchronisées. Par ailleurs, en clinique, la quantification est souvent faite à partir de données d’acquisition en sinogrammes généralement compressés. Mais des travaux antérieurs ont montré que cette approche pour accélérer la reconstruction diminue l’exactitude de la quantification et dégrade la résolution spatiale. Pour cette raison, nous avons parallélisé et implémenté sur GPU l’algorithme AW-LOR-OSEM (Attenuation-Weighted Line-of-Response-OSEM) ; une version de l’algorithme 3D OSEM qui effectue la reconstruction à partir de sinogrammes sans compression de données en intégrant les corrections de l’atténuation et de la normalisation dans les matrices de sensibilité. Nous avons comparé deux approches d’implantation : dans la première, la matrice système (MS) est calculée en temps réel au cours de la reconstruction, tandis que la seconde implantation utilise une MS pré- calculée avec une meilleure exactitude. Les résultats montrent que la première implantation offre une efficacité de calcul environ deux fois meilleure que celle obtenue dans la deuxième implantation. Les temps de reconstruction rapportés sont compatibles avec une utilisation clinique de ces deux stratégies.
Resumo:
Le cycle glycérolipides/acides gras libres (GL/FFA) est une voie métabolique clé qui relie le métabolisme du glucose et des acides gras et il est composé de deux processus métaboliques appelés lipogenèse et lipolyse. Le cycle GL/FFA, en particulier la lipolyse des triglycérides, génère diverses molécules de signalisation pour réguler la sécrétion d'insuline dans les cellules bêta pancréatiques et la thermogenèse non-frissonnante dans les adipocytes. Actuellement, les lipides provenant spécifiquement de la lipolyse impliqués dans ce processus sont mal connus. L’hydrolyse des triglycérides dans les cellules β est réalisée par les actions successives de la triglycéride lipase adipocytaire pour produire le diacylglycérol, ensuite par la lipase hormono-sensible pour produire le monoacylglycérol (MAG) et enfin par la MAG lipase (MAGL) qui relâche du glycerol et des acides gras. Dans les cellules bêta, la MAGL classique est très peu exprimée et cette étude a démontré que l’hydrolyse de MAG dans les cellules β est principalement réalisée par l'α/β-Hydrolase Domain-6 (ABHD6) nouvellement identifiée. L’inhibition d’ABHD6 par son inhibiteur spécifique WWL70, conduit à une accumulation des 1-MAG à longues chaines saturées à l'intérieur des cellules, accompagnée d’une augmentation de la sécrétion d'insuline stimulée par le glucose (GSIS). Baisser les niveaux de MAG en surexprimant ABHD6 dans la lignée cellulaire bêta INS832/13 réduit la GSIS, tandis qu’une augmentation des niveaux de MAG par le « knockdown » d’ABHD6 améliore la GSIS. L'exposition aiguë des monoacylglycérols exogènes stimule la sécrétion d'insuline de manière dose-dépendante et restaure la GSIS supprimée par un inhibiteur de lipases appelé orlistat. En outre, les souris avec une inactivation du gène ABHD6 dans tous les tissus (ABHD6-KO) et celles avec une inactivation du gène ABHD6 spécifiquement dans la cellule β présentent une GSIS stimulée, et leurs îlots montrent une augmentation de la production de monoacylglycérol et de la sécrétion d'insuline en réponse au glucose. L’inhibition d’ABHD6 chez les souris diabétiques (modèle induit par de faibles doses de streptozotocine) restaure la GSIS et améliore la tolérance au glucose. De plus, les résultats montrent que les MAGs non seulement améliorent la GSIS, mais potentialisent également la sécrétion d’insuline induite par les acides gras libres ainsi que la sécrétion d’insuline induite par divers agents et hormones, sans altération de l'oxydation et l'utilisation du glucose ainsi que l'oxydation des acides gras. Nous avons démontré que le MAG se lie à la protéine d’amorçage des vésicules appelée Munc13-1 et l’active, induisant ainsi l’exocytose de l'insuline. Sur la base de ces observations, nous proposons que le 1-MAG à chaines saturées agit comme facteur de couplage métabolique pour réguler la sécrétion d'insuline et que ABHD6 est un modulateur négatif de la sécrétion d'insuline. En plus de son rôle dans les cellules bêta, ABHD6 est également fortement exprimé dans les adipocytes et son niveau est augmenté avec l'obésité. Les souris dépourvues globalement d’ABHD6 et nourris avec une diète riche en gras (HFD) montrent une faible diminution de la prise alimentaire, une diminution du gain de poids corporel et de la glycémie à jeun et une amélioration de la tolérance au glucose et de la sensibilité à l'insuline et ont une activité locomotrice accrue. En outre, les souris ABHD6-KO affichent une augmentation de la dépense énergétique et de la thermogenèse induite par le froid. En conformité avec ceci, ces souris présentent des niveaux élevés d’UCP1 dans les adipocytes blancs et bruns, indiquant le brunissement des adipocytes blancs. Le phénotype de brunissement est reproduit dans les souris soit en les traitant de manière chronique avec WWL70 (inhibiteur d’ABHD6) ou des oligonucléotides anti-sense ciblant l’ABHD6. Les tissus adipeux blanc et brun isolés de souris ABHD6-KO montrent des niveaux très élevés de 1-MAG, mais pas de 2-MAG. L'augmentation des niveaux de MAG soit par administration exogène in vitro de 1-MAG ou par inhibition ou délétion génétique d’ABHD6 provoque le brunissement des adipocytes blancs. Une autre évidence indique que les 1-MAGs sont capables de transactiver PPARα et PPARγ et que l'effet de brunissement induit par WWL70 ou le MAG exogène est aboli par les antagonistes de PPARα et PPARγ. L’administration in vivo de l’antagoniste de PPARα GW6471 à des souris ABHD6-KO inverse partiellement les effets causés par l’inactivation du gène ABHD6 sur le gain de poids corporel, et abolit l’augmentation de la thermogenèse, le brunissement du tissu adipeux blanc et l'oxydation des acides gras dans le tissu adipeux brun. L’ensemble de ces observations indique que ABHD6 régule non seulement l’homéostasie de l'insuline et du glucose, mais aussi l'homéostasie énergétique et la fonction des tissus adipeux. Ainsi, 1-MAG agit non seulement comme un facteur de couplage métabolique pour réguler la sécrétion d'insuline en activant Munc13-1 dans les cellules bêta, mais régule aussi le brunissement des adipocytes blancs et améliore la fonction de la graisse brune par l'activation de PPARα et PPARγ. Ces résultats indiquent que ABHD6 est une cible prometteuse pour le développement de thérapies contre l'obésité, le diabète de type 2 et le syndrome métabolique.