18 resultados para the Low-variance deviational simulation Monte Carlo (LVDSMC)
Resumo:
Les preuves astronomiques stipulent qu'environ 4\% de la densité de masse-énergie de l'univers serait composé d'atomes. Le reste est séparé entre la matière sombre, qui représente 24\% de la densité de masse-énergie, et l'énergie sombre, qui s'accapare les 71\% restant. Le neutralino est une particule prédite par la théorie de la supersymétrie et est un candidat à la composition de la matière sombre. Le Projet d'Identification des Candidats Supersymétriques Sombres (PICASSO) vise à détecter le neutralino en utilisant des détecteurs à gouttelettes de C$_4$F$_{10}$ en surchauffe. Lors du passage d'une particule dans les gouttelettes de C$_4$F$_{10}$, une transition de phase aura lieu si l'énergie déposée est au-delà du seuil prédit par le critère de nucléation d'une transition de phase (théorie de Seitz). L'onde acoustique émise durant la transition de phase est ensuite transformée en impulsion électrique par des capteurs piézoélectriques placés sur le pourtour du détecteur. Le signal est amplifié, numérisé puis enregistré afin de pouvoir être analysé par des outils numériques. L'ouvrage qui suit présente les travaux effectués sur la compréhension des signaux des détecteurs à gouttelettes en surchauffe dans le but d'améliorer la discrimination du bruit de fond. Un détecteur à petites gouttelettes, r $\approx 15\mu m$ a été étudié et comparé à une simulation Monte Carlo. Il s'est avéré que les possibilités de discrimination du bruit de fond provenant des particules alpha étaient réduites pour un détecteur à petites gouttelettes, et ce en accord avec le modèle théorique. Différentes composantes du système d'acquisition ont été testées dont le couplage entre le capteur piézoélectrique et la paroi en acrylique, l'efficacité des capteurs piézoélectriques à gain intégré et les conséquences de la force du gain sur la qualité du signal. Une comparaison avec des résultats de l'expérience SIMPLE (Superheated Instrument for Massive ParticLe Experiments) a été effectuée en mesurant des signaux de détecteurs PICASSO à l'aide d'un microphone électrostatique à électret. Il a été conclu que les détecteurs PICASSO ne parviennent pas à reproduire la discrimination quasi parfaite présentée par SIMPLE.
Resumo:
Dans ce rapport de mémoire, nous avons utilisé les méthodes numériques telles que la dynamique moléculaire (code de Lammps) et ART-cinétique. Ce dernier est un algorithme de Monte Carlo cinétique hors réseau avec construction du catalogue d'événements à la volée qui incorpore exactement tous les effets élastiques. Dans la première partie, nous avons comparé et évalué des divers algorithmes de la recherche du minimum global sur une surface d'énergie potentielle des matériaux complexes. Ces divers algorithmes choisis sont essentiellement ceux qui utilisent le principe Bell-Evans-Polanyi pour explorer la surface d'énergie potentielle. Cette étude nous a permis de comprendre d'une part, les étapes nécessaires pour un matériau complexe d'échapper d'un minimum local vers un autre et d'autre part de contrôler les recherches pour vite trouver le minimum global. En plus, ces travaux nous ont amené à comprendre la force de ces méthodes sur la cinétique de l'évolution structurale de ces matériaux complexes. Dans la deuxième partie, nous avons mis en place un outil de simulation (le potentiel ReaxFF couplé avec ART-cinétique) capable d'étudier les étapes et les processus d'oxydation du silicium pendant des temps long comparable expérimentalement. Pour valider le système mis en place, nous avons effectué des tests sur les premières étapes d'oxydation du silicium. Les résultats obtenus sont en accord avec la littérature. Cet outil va être utilisé pour comprendre les vrais processus de l'oxydation et les transitions possibles des atomes d'oxygène à la surface du silicium associée avec les énergies de barrière, des questions qui sont des défis pour l'industrie micro-électronique.
Resumo:
Ce mémoire porte sur la simulation d'intervalles de crédibilité simultanés dans un contexte bayésien. Dans un premier temps, nous nous intéresserons à des données de précipitations et des fonctions basées sur ces données : la fonction de répartition empirique et la période de retour, une fonction non linéaire de la fonction de répartition. Nous exposerons différentes méthodes déjà connues pour obtenir des intervalles de confiance simultanés sur ces fonctions à l'aide d'une base polynomiale et nous présenterons une méthode de simulation d'intervalles de crédibilité simultanés. Nous nous placerons ensuite dans un contexte bayésien en explorant différents modèles de densité a priori. Pour le modèle le plus complexe, nous aurons besoin d'utiliser la simulation Monte-Carlo pour obtenir les intervalles de crédibilité simultanés a posteriori. Finalement, nous utiliserons une base non linéaire faisant appel à la transformation angulaire et aux splines monotones pour obtenir un intervalle de crédibilité simultané valide pour la période de retour.