16 resultados para hierarchical classification system
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (39)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (31)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (34)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (53)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (79)
- CentAUR: Central Archive University of Reading - UK (36)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (12)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (22)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (8)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- DRUM (Digital Repository at the University of Maryland) (1)
- Ecology and Society (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Hospitais da Universidade de Coimbra (1)
- Instituto Politécnico do Porto, Portugal (25)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (6)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (10)
- Nottingham eTheses (2)
- Open University Netherlands (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (3)
- Publishing Network for Geoscientific & Environmental Data (22)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (3)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (10)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (94)
- RIBERDIS - Repositorio IBERoamericano sobre DIScapacidad - Centro Español de Documentación sobre Discapacidad (CEDD) (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (40)
- Universidad de Alicante (11)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (22)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universita di Parma (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (61)
- Université de Montréal, Canada (16)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (17)
- University of Queensland eSpace - Australia (28)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.