17 resultados para drug-DNA interactions
Resumo:
L'exposition aux mélanges de contaminants (environnementaux, alimentaires ou thérapeutiques) soulève de nombreuses interrogations et inquiétudes vis-à-vis des probabilités d'interactions toxicocinétiques et toxicodynamiques. Une telle coexposition peut influencer le mode d’action des composants du cocktail et donc de leur toxicité, suite à un accroissement de leurs concentrations internes. Le bisphénol A (4 dihydroxy-2,2-diphenylpropane) est un contaminant chimique répandu de manière ubiquitaire dans notre environnement, largement utilisé dans la fabrication des plastiques avec l’un des plus grands volumes de production à l’échelle mondiale. Il est un perturbateur endocrinien par excellence de type œstrogèno-mimétique. Cette molécule est biotransformée en métabolites non toxiques par un processus de glucuronidation. L'exposition concomitante à plusieurs xénobiotiques peut induire à la baisse le taux de glucuronidation du polluant chimique d'intérêt, entre autres la co-exposition avec des médicaments. Puisque la consommation de produits thérapeutiques est un phénomène grandissant dans la population, la possibilité d’une exposition simultanée est d’autant plus grande et forte. Sachant que l'inhibition métabolique est le mécanisme d'interaction le plus plausible pouvant aboutir à une hausse des niveaux internes ainsi qu’à une modulation de la toxicité prévue, la présente étude visait d'abord à confirmer et caractériser ce type d'interactions métaboliques entre le bisphénol A et le naproxène, qui est un anti-inflammatoire non stéroïdiennes (AINS), sur l'ensemble d'un organe intact en utilisant le système de foie de rat isolé et perfusé (IPRL). Elle visait ensuite à déterminer la cinétique enzymatique de chacune de ces deux substances, seule puis en mélange binaire. Dans un second temps, nous avons évalué aussi l’influence de la présence d'albumine sur la cinétique métabolique et le comportement de ces deux substances étudiées en suivant le même modèle de perfusion in vivo au niveau du foie de rat. Les constantes métaboliques ont été déterminées par régression non linéaire. Les métabolismes du BPA et du NAP seuls ont montré une cinétique saturable avec une vélocité maximale (Vmax) de 8.9 nmol/min/ mg prot de foie et une constante d'affinité de l'enzyme pour le substrat (Km) de 51.6 μM pour le BPA et de 3 nmol/min/mg prot de foie et 149.2 μM pour le NAP. L'analyse des expositions combinées suggère une inhibition compétitive partielle du métabolisme du BPA par le NAP avec une valeur de Ki estimée à 0.3542 μM. Les résultats obtenus montrent que l’analyse de risque pour les polluants environnementaux doit donc prendre en considération la consommation des produits pharmaceutiques comme facteur pouvant accroitre le niveau interne lors d’une exposition donnée. Ces données in vivo sur les interactions métaboliques pourraient être intégrées dans un modèle pharmacocinétique à base physiologique (PBPK) pour prédire les conséquences toxicococinétique (TK) de l'exposition d'un individu à ces mélanges chimiques.
Resumo:
Les anthracyclines tels que la doxorubicin et la daunorubicin sont une famille de médicaments anticancéreux hydrophiles qui doivent être transportés dans les cellules afin d’exercer leur action par intercalation à l’ADN dans le noyau cellulaire. Ceci mène à la perturbation du métabolisme de l’ADN et entraine la mort cellulaire. Les anthracyclines sont utilisés pour le traitement d’une variété de cancers incluant la leucémie, les lymphomes, le cancer du sein, le cancer des poumons et le cancer des ovaires. Étant donné que le transport actif des anthracyclines dans les cellules a partiellement été démontré, le transporteur spécifique impliqué dans ce processus n’est pas encore connu. En utilisant un modèle de cancer des ovaires, la lignée cellulaire TOV2223G, nous avons démontré que des substrats spécifiques au transporteur de cations organiques 1 (OCT1), notamment la ergothionéine, la thiamine et la phenformin, ont partiellement inhibé l’absorption de la daunorubicin en différence de la carnitine qui est un substrat de haute affinité des transporteurs CT2 et OCTN2. Ces résultats suggèrent que les transporteurs organiques spécifiques au transport de la carnitine ne sont pas impliqués dans le transport des anthracyclines. Ainsi, nos résultats ont démontré que l’absorption de la daunorubicin est orchestrée par le transporteur OCT1 dans les cellules TOV2223G (Km ~ 5 μM) et des concentrations micromolaires de choline ont complètement abolies l’absorption de la drogue. De plus, un ARN sh dirigé contre OCT1 a réprimé son expression protéique, ce qui a été confirmé par la technique d’immuno-buvardage en utilisant un anti-OCT1 anticorps. Les cellules déficientes en OCT1 n’ont pas été capables d’absorber la daunorubicin et ont été plus résistantes à l’action de la drogue par rapport aux cellules contrôle. La transfection des cellules HEK293T avec un plasmide construit de façon à faire exprimer OCT1 comme protéine de fusion avec la protéine fluorescente EYFP a montré que celle-ci est localisée dans la membrane plasmique. Les cellules transfectées ont été capables d’absorber cinq fois plus de daunorubicin comparé aux cellules contrôles. Cette étude est, selon nous, la première à démontrer que OCT1 est un transporteur de haute affinité des anthracyclines. Ainsi, nous avons émis l’hypothèse que des défauts de OCT1 peuvent contribuer à l’efficacité de la réponse des cellules cancéreuses à la chimiothérapie avec les anthracyclines.