33 resultados para Transformations (Mathematics)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les films de simulations qui accompagnent le document ont été réalisés avec Pymol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quelles sont les voies par lesquelles les changements sociaux affectent les identités collectives et de quelle manière une nouvelle identité vient à être adoptée par une population. Les grandes transformations qui eurent lieu en Mongolie du 19e siècle à la moitié du 20e siècle seront abordées pour tenter de répondre à ces questions. Dans un court laps de temps, cette région passa par trois systèmes politiques différents; d'une partie semi-autonome du territoire de l'empire Qing à une théocratie bouddhiste puis à une République populaire. Dans chacun des cas, les contextes sociaux ayant provoqué des changements dans la définition identitaire seront abordés ainsi que la forme par laquelle les nouveaux concepts d'identité collective allaient être sélectionnés, modifiés ou construits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les copulas archimédiennes hiérarchiques ont récemment gagné en intérêt puisqu’elles généralisent la famille de copules archimédiennes, car elles introduisent une asymétrie partielle. Des algorithmes d’échantillonnages et des méthodes ont largement été développés pour de telles copules. Néanmoins, concernant l’estimation par maximum de vraisemblance et les tests d’adéquations, il est important d’avoir à disposition la densité de ces variables aléatoires. Ce travail remplie ce manque. Après une courte introduction aux copules et aux copules archimédiennes hiérarchiques, une équation générale sur les dérivées des noeuds et générateurs internes apparaissant dans la densité des copules archimédiennes hiérarchique. sera dérivée. Il en suit une formule tractable pour la densité des copules archimédiennes hiérarchiques. Des exemples incluant les familles archimédiennes usuelles ainsi que leur transformations sont présentés. De plus, une méthode numérique efficiente pour évaluer le logarithme des densités est présentée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bouleversements démographiques, pressions assimilatrices, défaites militaires et rivalités territoriales : ce mémoire étudie les transformations que connaît la société Cherokee sous l’impulsion de ces forces au cours du «long XVIIIe siècle» qui débute avec l’intensification des contacts avec les colons anglais vers 1700 et qui se termine avec la déportation des Cherokees vers l’Indian Territory, dans l’actuel Oklahoma, à la fin des années 1830. Son regard porte principalement la centralisation des institutions politiques, la transformation des règles qui définissent l’appartenance à la nation, et l’évolution des rôles des genres dans la famille et dans l’économie pendant la période entre la signature du traité de paix de 1794 et l’adoption par les Cherokees d’une Constitution fortement inspirée de celle des États-Unis, en 1827.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’ingénierie dirigée par les modèles (IDM) est un paradigme d’ingénierie du logiciel bien établi, qui préconise l’utilisation de modèles comme artéfacts de premier ordre dans les activités de développement et de maintenance du logiciel. La manipulation de plusieurs modèles durant le cycle de vie du logiciel motive l’usage de transformations de modèles (TM) afin d’automatiser les opérations de génération et de mise à jour des modèles lorsque cela est possible. L’écriture de transformations de modèles demeure cependant une tâche ardue, qui requiert à la fois beaucoup de connaissances et d’efforts, remettant ainsi en question les avantages apportés par l’IDM. Afin de faire face à cette problématique, de nombreux travaux de recherche se sont intéressés à l’automatisation des TM. L’apprentissage de transformations de modèles par l’exemple (TMPE) constitue, à cet égard, une approche prometteuse. La TMPE a pour objectif d’apprendre des programmes de transformation de modèles à partir d’un ensemble de paires de modèles sources et cibles fournis en guise d’exemples. Dans ce travail, nous proposons un processus d’apprentissage de transformations de modèles par l’exemple. Ce dernier vise à apprendre des transformations de modèles complexes en s’attaquant à trois exigences constatées, à savoir, l’exploration du contexte dans le modèle source, la vérification de valeurs d’attributs sources et la dérivation d’attributs cibles complexes. Nous validons notre approche de manière expérimentale sur 7 cas de transformations de modèles. Trois des sept transformations apprises permettent d’obtenir des modèles cibles parfaits. De plus, une précision et un rappel supérieurs à 90% sont enregistrés au niveau des modèles cibles obtenus par les quatre transformations restantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La modélisation géométrique est importante autant en infographie qu'en ingénierie. Notre capacité à représenter l'information géométrique fixe les limites et la facilité avec laquelle on manipule les objets 3D. Une de ces représentations géométriques est le maillage volumique, formé de polyèdres assemblés de sorte à approcher une forme désirée. Certaines applications, tels que le placage de textures et le remaillage, ont avantage à déformer le maillage vers un domaine plus régulier pour faciliter le traitement. On dit qu'une déformation est \emph{quasi-conforme} si elle borne la distorsion. Cette thèse porte sur l’étude et le développement d'algorithmes de déformation quasi-conforme de maillages volumiques. Nous étudions ces types de déformations parce qu’elles offrent de bonnes propriétés de préservation de l’aspect local d’un solide et qu’elles ont été peu étudiées dans le contexte de l’informatique graphique, contrairement à leurs pendants 2D. Cette recherche tente de généraliser aux volumes des concepts bien maitrisés pour la déformation de surfaces. Premièrement, nous présentons une approche linéaire de la quasi-conformité. Nous développons une méthode déformant l’objet vers son domaine paramétrique par une méthode des moindres carrés linéaires. Cette méthode est simple d'implémentation et rapide d'exécution, mais n'est qu'une approximation de la quasi-conformité car elle ne borne pas la distorsion. Deuxièmement, nous remédions à ce problème par une approche non linéaire basée sur les positions des sommets. Nous développons une technique déformant le domaine paramétrique vers le solide par une méthode des moindres carrés non linéaires. La non-linéarité permet l’inclusion de contraintes garantissant l’injectivité de la déformation. De plus, la déformation du domaine paramétrique au lieu de l’objet lui-même permet l’utilisation de domaines plus généraux. Troisièmement, nous présentons une approche non linéaire basée sur les angles dièdres. Cette méthode définit la déformation du solide par les angles dièdres au lieu des positions des sommets du maillage. Ce changement de variables permet une expression naturelle des bornes de distorsion de la déformation. Nous présentons quelques applications de cette nouvelle approche dont la paramétrisation, l'interpolation, l'optimisation et la compression de maillages tétraédriques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, on s'intéresse à l'action du groupe des transformations affines et des homothéties sur l'axe du temps des systèmes différentiels quadratiques à foyer faible d'ordre trois, dans le plan. Ces systèmes sont importants dans le cadre du seizième problème d'Hilbert. Le diagramme de bifurcation a été produit à l'aide de la forme normale de Li dans des travaux de Andronova [2] et Artès et Llibre [4], sans utiliser le plan projectif comme espace des paramètres ni de méthodes globales. Dans [7], Llibre et Schlomiuk ont utilisé le plan projectif comme espace des paramètres et des notions à caractère géométrique global (invariants affines et topologiques). Ce diagramme contient 18 portraits de phase et certains de ces portraits sont répétés dans des parties distinctes du diagramme. Ceci nous mène à poser la question suivante : existe-t-il des systèmes distincts, correspondant à des valeurs distinctes de paramètres, se trouvant sur la même orbite par rapport à l'action du groupe? Dans ce mémoire, on prouve un résultat original : l'action du groupe n'est pas triviale sur la forme de Li (théorème 3.1), ni sur la forme normale de Bautin (théorème 4.1). En utilisant le deuxième résultat, on construit l'espace topologique quotient des systèmes quadratiques à foyer faible d'ordre trois par rapport à l'action de ce groupe.