20 resultados para Surface active agents
Resumo:
À ce jour, les différentes méthodes de reconstruction des mouvements du plasma à la surface du Soleil qui ont été proposées présupposent une MHD idéale (Welsch et al., 2007). Cependant, Chae & Sakurai (2008) ont montré l’existence d’une diffusivité magnétique turbulente à la photosphère. Nous introduisons une généralisation de la méthode du Minimum Energy Fit (MEF ; Longcope, 2004) pour les plasmas résistifs. Le Resistive Minimum Energy Fit (MEF-R ; Tremblay & Vincent, 2014) reconstruit les champs de vitesse du plasma et la diffusivité magnétique turbulente qui satisfont à l’équation d’induction magnétique résistive et qui minimisent une fonctionnelle analogue à l’énergie cinétique totale. Une séquence de magnétogrammes et de Dopplergrammes sur les régions actives AR 9077 et AR 12158 ayant chacune produit une éruption de classe X a été utilisée dans MEF-R pour reconstruire les mouvements du plasma à la surface du Soleil. Les séquences temporelles des vitesses et des diffusivités magnétiques turbulentes calculées par MEF-R sont comparées au flux en rayons X mous enregistré par le satellite GOES-15 avant, pendant et après l’éruption. Pour AR 12158, nous observons une corrélation entre les valeurs significatives de la diffusivité magnétique turbulente et de la vitesse microturbulente pour les champs magnétiques faibles.
Resumo:
Injectable drug nanocarriers have greatly benefited in their clinical development from the addition of a superficial hydrophilic corona to improve their cargo pharmacokinetics. The most studied and used polymer for this purpose is poly(ethylene glycol), PEG. However, in spite of its wide use for over two decades now, there is no general consensus on the optimum PEG chain coverage-density and size required to escape from the mononuclear phagocyte system and to extend the circulation time. Moreover, cellular uptake and active targeting may have conflicting requirements in terms of surface properties of the nanocarriers which complicates even more the optimization process. These persistent issues can be largely attributed to the lack of straightforward characterization techniques to assess the coverage-density, the conformation or the thickness of a PEG layer grafted or adsorbed on a particulate drug carrier and is certainly one of the main reasons why so few clinical applications involving PEG coated particle-based drug delivery systems are under clinical trial so far. The objective of this review is to provide the reader with a brief description of the most relevant techniques used to assess qualitatively or quantitatively PEG chain coverage-density, conformation and layer thickness on polymeric nanoparticles. Emphasis has been made on polymeric particle (solid core) either made of copolymers containing PEG chains or modified after particle formation. Advantages and limitations of each technique are presented as well as methods to calculate PEG coverage-density and to investigate PEG chains conformation on the NP surface.
Resumo:
Le papier bioactif est obtenu par la modification de substrat du papier avec des biomolécules et des réactifs. Ce type de papier est utilisé dans le développement de nouveaux biocapteurs qui sont portables, jetables et économiques visant à capturer, détecter et dans certains cas, désactiver les agents pathogènes. Généralement les papiers bioactifs sont fabriqués par l’incorporation de biomolécules telles que les enzymes et les anticorps sur la surface du papier. L’immobilisation de ces biomolécules sur les surfaces solides est largement utilisée pour différentes applications de diagnostic comme dans immunocapteurs et immunoessais mais en raison de la nature sensible des enzymes, leur intégration au papier à grande échelle a rencontré plusieurs difficultés surtout dans les conditions industrielles. Pendant ce temps, les microcapsules sont une plate-forme intéressante pour l’immobilisation des enzymes et aussi assez efficace pour permettre à la fonctionnalisation du papier à grande échelle car le papier peut être facilement recouvert avec une couche de telles microcapsules. Dans cette étude, nous avons développé une plate-forme générique utilisant des microcapsules à base d’alginate qui peuvent être appliquées aux procédés usuels de production de papier bioactif et antibactérien avec la capacité de capturer des pathogènes à sa surface et de les désactiver grâce à la production d’un réactif anti-pathogène. La conception de cette plate-forme antibactérienne est basée sur la production constante de peroxyde d’hydrogène en tant qu’agent antibactérien à l’intérieur des microcapsules d’alginate. Cette production de peroxyde d’hydrogène est obtenue par oxydation du glucose catalysée par la glucose oxydase encapsulée à l’intérieur des billes d’alginate. Les différentes étapes de cette étude comprennent le piégeage de la glucose oxydase à l’intérieur des microcapsules d’alginate, l’activation et le renforcement de la surface des microcapsules par ajout d’une couche supplémentaire de chitosan, la vérification de la possibilité d’immobilisation des anticorps (immunoglobulines G humaine comme une modèle d’anticorps) sur la surface des microcapsules et enfin, l’évaluation des propriétés antibactériennes de cette plate-forme vis-à-vis l’Escherichia coli K-12 (E. coli K-12) en tant qu’un représentant des agents pathogènes. Après avoir effectué chaque étape, certaines mesures et observations ont été faites en utilisant diverses méthodes et techniques analytiques telles que la méthode de Bradford pour dosage des protéines, l’électroanalyse d’oxygène, la microscopie optique et confocale à balayage laser (CLSM), la spectrométrie de masse avec désorption laser assistée par matrice- temps de vol (MALDI-TOF-MS), etc. Les essais appropriés ont été effectués pour valider la réussite de modification des microcapsules et pour confirmer à ce fait que la glucose oxydase est toujours active après chaque étape de modification. L’activité enzymatique spécifique de la glucose oxydase après l’encapsulation a été évaluée à 120±30 U/g. Aussi, des efforts ont été faits pour immobiliser la glucose oxydase sur des nanoparticules d’or avec deux tailles différentes de diamètre (10,9 nm et 50 nm) afin d’améliorer l’activité enzymatique et augmenter l’efficacité d’encapsulation. Les résultats obtenus lors de cette étude démontrent les modifications réussies sur les microcapsules d’alginate et aussi une réponse favorable de cette plate-forme antibactérienne concernant la désactivation de E. coli K-12. La concentration efficace de l’activité enzymatique afin de désactivation de cet agent pathogénique modèle a été déterminée à 1.3×10-2 U/ml pour une concentration de 6.7×108 cellules/ml de bactéries. D’autres études sont nécessaires pour évaluer l’efficacité de l’anticorps immobilisé dans la désactivation des agents pathogènes et également intégrer la plate-forme sur le papier et valider l’efficacité du système une fois qu’il est déposé sur papier.
Resumo:
Cette thèse se compose en deux parties: Première Partie: La conception et la synthèse d’analogues pyrrolidiniques, utilisés comme agents anticancéreux, dérivés du FTY720. FTY720 est actuellement commercialisé comme médicament (GilenyaTM) pour le traitement de la sclérose en plaques rémittente-récurrente. Il agit comme immunosuppresseur en raison de son effet sur les récepteurs de la sphingosine-1-phosphate. A fortes doses, FTY720 présente un effet antinéoplasique. Cependant, à de telles doses, un des effets secondaires observé est la bradycardie dû à l’activation des récepteurs S1P1 et S1P3. Ceci limite son potentiel d’utilisation lors de chimiothérapie. Nos précédentes études ont montré que des analogues pyrrolidiniques dérivés du FTY720 présentaient une activité anticancéreuse mais aucune sur les récepteurs S1P1 et S1P3. Nous avons soumis l’idée qu’une étude relation structure-activité (SARs) pourrait nous conduire à la découverte de nouveaux agents anti tumoraux. Ainsi, deux séries de composés pyrrolidiniques (O-arylmethyl substitué et C-arylmethyl substitué) ont pu être envisagés et synthétisés (Chapitre 1). Ces analogues ont montré d’excellentes activités cytotoxiques contre diverses cellules cancéreuses humaines (prostate, colon, sein, pancréas et leucémie), plus particulièrement les analogues actifs qui ne peuvent pas être phosphorylés par SphK, présentent un plus grand potentiel pour le traitement du cancer sans effet secondaire comme la bradycardie. Les études mécanistiques suggèrent que ces analogues de déclencheurs de régulation négative sur les transporteurs de nutriments induisent une crise bioénergétique en affamant les cellules cancéreuses. Afin d’approfondir nos connaissances sur les récepteurs cibles, nous avons conçu et synthétisé des sondes diazirine basées sur le marquage d’affinité aux photons (méthode PAL: Photo-Affinity Labeling) (Chapitre 2). En s’appuyant sur la méthode PAL, il est possible de récolter des informations sur les récepteurs cibles à travers l’analyse LC/MS/MS de la protéine. Ces tests sont en cours et les résultats sont prometteurs. Deuxième partie: Coordination métallique et catalyse di fonctionnelle de dérivés β-hydroxy cétones tertiaires. Les réactions de Barbier et de Grignard sont des méthodes classiques pour former des liaisons carbone-carbone, et généralement utilisées pour la préparation d’alcools secondaires et tertiaires. En vue d’améliorer la réaction de Grignard avec le 1-iodobutane dans les conditions « one-pot » de Barbier, nous avons obtenu comme produit majoritaire la β-hydroxy cétone provenant de l’auto aldolisation de la 5-hexen-2-one, plutôt que le produit attendu d’addition de l’alcool (Chapitre 3). La formation inattendue de la β-hydroxy cétone a également été observée en utilisant d’autres dérivés méthyl cétone. Étonnement dans la réaction intramoléculaire d’une tricétone, connue pour former la cétone Hajos-Parrish, le produit majoritaire est rarement la β-hydroxy cétone présentant la fonction alcool en position axiale. Intrigué par ces résultats et après l’étude systématique des conditions de réaction, nous avons développé deux nouvelles méthodes à travers la synthèse sélective et catalytique de β-hydroxy cétones spécifiques par cyclisation intramoléculaire avec des rendements élevés (Chapitre 4). La réaction peut être catalysée soit par une base adaptée et du bromure de lithium comme additif en passant par un état de transition coordonné au lithium, ou bien soit à l’aide d’un catalyseur TBD di fonctionnel, via un état de transition médiée par une coordination bidenté au TBD. Les mécanismes proposés ont été corroborés par calcul DFT. Ces réactions catalytiques ont également été appliquées à d’autres substrats comme les tricétones et les dicétones. Bien que les efforts préliminaires afin d’obtenir une enantioselectivité se sont révélés sans succès, la synthèse et la recherche de nouveaux catalyseurs chiraux sont en cours.
Resumo:
La morphologie des couches actives des cellules solaires organiques joue un rôle important sur l’efficacité de conversion de l’énergie solaire en énergie électrique de ces dispositifs. Les hétérojonctions planaires et les hétérojonctions en volume sont les plus communément utilisées. Cependant, la morphologie idéale pour l’efficacité se situerait à mis chemin entre celles-ci. Il s’agit de l’hétérojonction nanostructurée qui augmenterait la surface entre les couches actives de matériaux tout en favorisant le transport des porteurs de charge. L’objectif de ce projet de maîtrise est d’étudier l’impact de l’implantation de nanostructures dans les cellules solaires organiques sur leurs performances photovoltaïques. Pour ce faire, on utilise la méthode de nanoimpression thermique sur le matériau donneur, le P3HT, afin que celui-ci forme une interface nanostructurée avec le matériau accepteur, le PCBM. Pour effectuer les nanoimpressions, des moules en alumine nanoporeuse ont été fabriqués à l’aide du procédé d’anodisation en deux temps développé par Masuda et al. Ces moules ont subi un traitement afin de faciliter leur séparation du P3HT. Les agents antiadhésifs PDMS et FTDS ont été utilisés à cette fin. Les résultats obtenus témoignent de la complexité d’exécution du procédé de nanoimpression. Il a été démontré que la pression appliquée durant le procédé, la tension superficielle des éléments en contact et les dimensions des nanopores des moules sont des paramètres critiques pour le succès des nanoimpressions. Ceux-ci ont donc dû être optimisés de manière à réussir cette opération. Ainsi, des cellules à interface nanostructurée à 25% avec des nanobâtonnets de 35 nm de hauteur ont pu être fabriquées. Les cellules nanostructurées ont démontré une efficacité 2,3 ± 0,6 fois supérieure aux cellules sans nanostructures, dites planaires. D’autre part, un solvant a été proposé pour diminuer l’interdiffusion entre les couches de P3HT et de PCBM pouvant altérer les nanostructures. Ce phénomène bien connu survient lors du dépot de la couche de PCBM avec le dichlorométhane, un solvant orthogonal avec ces matériaux. Des mesures au TOF-SIMS ont démontré que le limonène permet de diminuer l’interdiffusion entre les couches de P3HT et de PCBM, ce qui en fait un meilleur solvant orthogonal que le dichlorométhane.