22 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ce mémoire s'inscrit dans le domaine de la vision par ordinateur. Elle s'intéresse à la calibration de systèmes de caméras stéréoscopiques, à la mise en correspondance caméra-projecteur, à la reconstruction 3D, à l'alignement photométrique de projecteurs, au maillage de nuages de points, ainsi qu'au paramétrage de surfaces. Réalisé dans le cadre du projet LightTwist du laboratoire Vision3D, elle vise à permettre la projection sur grandes surfaces arbitraires à l'aide de plusieurs projecteurs. Ce genre de projection est souvent utilisé en arts technologiques, en théâtre et en projection architecturale. Dans ce mémoire, on procède au calibrage des caméras, suivi d'une reconstruction 3D par morceaux basée sur une méthode active de mise en correspondance, la lumière non structurée. Après un alignement et un maillage automatisés, on dispose d'un modèle 3D complet de la surface de projection. Ce mémoire introduit ensuite une nouvelle approche pour le paramétrage de modèles 3D basée sur le calcul efficace de distances géodésiques sur des maillages. L'usager n'a qu'à délimiter manuellement le contour de la zone de projection sur le modèle. Le paramétrage final est calculé en utilisant les distances obtenues pour chaque point du modèle. Jusqu'à maintenant, les méthodes existante ne permettaient pas de paramétrer des modèles ayant plus d'un million de points.
Resumo:
L’analyse de la marche a émergé comme l’un des domaines médicaux le plus im- portants récemment. Les systèmes à base de marqueurs sont les méthodes les plus fa- vorisées par l’évaluation du mouvement humain et l’analyse de la marche, cependant, ces systèmes nécessitent des équipements et de l’expertise spécifiques et sont lourds, coûteux et difficiles à utiliser. De nombreuses approches récentes basées sur la vision par ordinateur ont été développées pour réduire le coût des systèmes de capture de mou- vement tout en assurant un résultat de haute précision. Dans cette thèse, nous présentons notre nouveau système d’analyse de la démarche à faible coût, qui est composé de deux caméras vidéo monoculaire placées sur le côté gauche et droit d’un tapis roulant. Chaque modèle 2D de la moitié du squelette humain est reconstruit à partir de chaque vue sur la base de la segmentation dynamique de la couleur, l’analyse de la marche est alors effectuée sur ces deux modèles. La validation avec l’état de l’art basée sur la vision du système de capture de mouvement (en utilisant le Microsoft Kinect) et la réalité du ter- rain (avec des marqueurs) a été faite pour démontrer la robustesse et l’efficacité de notre système. L’erreur moyenne de l’estimation du modèle de squelette humain par rapport à la réalité du terrain entre notre méthode vs Kinect est très prometteur: les joints des angles de cuisses (6,29◦ contre 9,68◦), jambes (7,68◦ contre 11,47◦), pieds (6,14◦ contre 13,63◦), la longueur de la foulée (6.14cm rapport de 13.63cm) sont meilleurs et plus stables que ceux de la Kinect, alors que le système peut maintenir une précision assez proche de la Kinect pour les bras (7,29◦ contre 6,12◦), les bras inférieurs (8,33◦ contre 8,04◦), et le torse (8,69◦contre 6,47◦). Basé sur le modèle de squelette obtenu par chaque méthode, nous avons réalisé une étude de symétrie sur différentes articulations (coude, genou et cheville) en utilisant chaque méthode sur trois sujets différents pour voir quelle méthode permet de distinguer plus efficacement la caractéristique symétrie / asymétrie de la marche. Dans notre test, notre système a un angle de genou au maximum de 8,97◦ et 13,86◦ pour des promenades normale et asymétrique respectivement, tandis que la Kinect a donné 10,58◦et 11,94◦. Par rapport à la réalité de terrain, 7,64◦et 14,34◦, notre système a montré une plus grande précision et pouvoir discriminant entre les deux cas.
Resumo:
En apprentissage automatique, domaine qui consiste à utiliser des données pour apprendre une solution aux problèmes que nous voulons confier à la machine, le modèle des Réseaux de Neurones Artificiels (ANN) est un outil précieux. Il a été inventé voilà maintenant près de soixante ans, et pourtant, il est encore de nos jours le sujet d'une recherche active. Récemment, avec l'apprentissage profond, il a en effet permis d'améliorer l'état de l'art dans de nombreux champs d'applications comme la vision par ordinateur, le traitement de la parole et le traitement des langues naturelles. La quantité toujours grandissante de données disponibles et les améliorations du matériel informatique ont permis de faciliter l'apprentissage de modèles à haute capacité comme les ANNs profonds. Cependant, des difficultés inhérentes à l'entraînement de tels modèles, comme les minima locaux, ont encore un impact important. L'apprentissage profond vise donc à trouver des solutions, en régularisant ou en facilitant l'optimisation. Le pré-entraînnement non-supervisé, ou la technique du ``Dropout'', en sont des exemples. Les deux premiers travaux présentés dans cette thèse suivent cette ligne de recherche. Le premier étudie les problèmes de gradients diminuants/explosants dans les architectures profondes. Il montre que des choix simples, comme la fonction d'activation ou l'initialisation des poids du réseaux, ont une grande influence. Nous proposons l'initialisation normalisée pour faciliter l'apprentissage. Le second se focalise sur le choix de la fonction d'activation et présente le rectifieur, ou unité rectificatrice linéaire. Cette étude a été la première à mettre l'accent sur les fonctions d'activations linéaires par morceaux pour les réseaux de neurones profonds en apprentissage supervisé. Aujourd'hui, ce type de fonction d'activation est une composante essentielle des réseaux de neurones profonds. Les deux derniers travaux présentés se concentrent sur les applications des ANNs en traitement des langues naturelles. Le premier aborde le sujet de l'adaptation de domaine pour l'analyse de sentiment, en utilisant des Auto-Encodeurs Débruitants. Celui-ci est encore l'état de l'art de nos jours. Le second traite de l'apprentissage de données multi-relationnelles avec un modèle à base d'énergie, pouvant être utilisé pour la tâche de désambiguation de sens.
Resumo:
La capacité du système visuel humain à compléter une image partiellement dévoilée et à en dériver une forme globale à partir de ses fragments visibles incomplets est un phénomène qui suscite, jusqu’à nos jours, l’intérêt de nombreux scientifiques œuvrant dans différents milieux de recherche tels que l’informatique, l’ingénierie en intelligence artificielle, la perception et les neurosciences. Dans le cadre de la présente thèse, nous nous sommes intéressés spécifiquement sur les substrats neuronaux associés à ce phénomène de clôture perceptive. La thèse actuelle a donc pour objectif général d’explorer le décours spatio-temporel des corrélats neuronaux associés à la clôture perceptive au cours d’une tâche d’identification d’objets. Dans un premier temps, le premier article visera à caractériser la signature électrophysiologique liée à la clôture perceptive chez des personnes à développement typique dans le but de déterminer si les processus de clôture perceptive reflèteraient l’interaction itérative entre les mécanismes de bas et de haut-niveau et si ceux-ci seraient sollicités à une étape précoce ou tardive lors du traitement visuel de l’information. Dans un deuxième temps, le second article a pour objectif d’explorer le décours spatio-temporel des mécanismes neuronaux sous-tendant la clôture perceptive dans le but de déterminer si les processus de clôture perceptive des personnes présentant un trouble autistique se caractérisent par une signature idiosyncrasique des changements d’amplitude des potentiels évoqués (PÉs). En d’autres termes, nous cherchons à déterminer si la clôture perceptive en autisme est atypique et nécessiterait davantage la contribution des mécanismes de bas-niveau et/ou de haut-niveau. Les résultats du premier article indiquent que le phénomène de clôture perceptive est associé temporellement à l’occurrence de la composante de PÉs N80 et P160 tel que révélé par des différences significatives claires entre des objets et des versions méconnaissables brouillées. Nous proposons enfin que la clôture perceptive s’avère un processus de transition reflétant les interactions proactives entre les mécanismes neuronaux œuvrant à apparier l’input sensoriel fragmenté à une représentation d’objets en mémoire plausible. Les résultats du second article révèlent des effets précoces de fragmentation et d’identification obtenus au niveau de composantes de potentiels évoqués N80 et P160 et ce, en toute absence d’effets au niveau des composantes tardives pour les individus avec autisme de haut niveau et avec syndrome d’Asperger. Pour ces deux groupes du trouble du spectre autistique, les données électrophysiologiques suggèrent qu’il n’y aurait pas de pré-activation graduelle de l’activité des régions corticales, entre autres frontales, aux moments précédant et menant vers l’identification d’objets fragmentés. Pour les participants autistes et avec syndrome d’Asperger, les analyses statistiques démontrent d’ailleurs une plus importante activation au niveau des régions postérieures alors que les individus à développement typique démontrent une activation plus élevée au niveau antérieur. Ces résultats pourraient suggérer que les personnes du spectre autistique se fient davantage aux processus perceptifs de bas-niveau pour parvenir à compléter les images d’objets fragmentés. Ainsi, lorsque confrontés aux images d’objets partiellement visibles pouvant sembler ambiguës, les individus avec autisme pourraient démontrer plus de difficultés à générer de multiples prédictions au sujet de l’identité d’un objet qu’ils perçoivent. Les implications théoriques et cliniques, les limites et perspectives futures de ces résultats sont discutées.
Resumo:
Notre système visuel extrait d'ordinaire l'information en basses fréquences spatiales (FS) avant celles en hautes FS. L'information globale extraite tôt peut ainsi activer des hypothèses sur l'identité de l'objet et guider l'extraction d'information plus fine spécifique par la suite. Dans les troubles du spectre autistique (TSA), toutefois, la perception des FS est atypique. De plus, la perception des individus atteints de TSA semble être moins influencée par leurs a priori et connaissances antérieures. Dans l'étude décrite dans le corps de ce mémoire, nous avions pour but de vérifier si l'a priori de traiter l'information des basses aux hautes FS était présent chez les individus atteints de TSA. Nous avons comparé le décours temporel de l'utilisation des FS chez des sujets neurotypiques et atteints de TSA en échantillonnant aléatoirement et exhaustivement l'espace temps x FS. Les sujets neurotypiques extrayaient les basses FS avant les plus hautes: nous avons ainsi pu répliquer le résultat de plusieurs études antérieures, tout en le caractérisant avec plus de précision que jamais auparavant. Les sujets atteints de TSA, quant à eux, extrayaient toutes les FS utiles, basses et hautes, dès le début, indiquant qu'ils ne possédaient pas l'a priori présent chez les neurotypiques. Il semblerait ainsi que les individus atteints de TSA extraient les FS de manière purement ascendante, l'extraction n'étant pas guidée par l'activation d'hypothèses.
Resumo:
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière.