23 resultados para Query expansion, Text mining, Information retrieval, Chinese IR
Resumo:
Un atout majeur des organisations consiste en leur capacité à créer et exploiter l’information et les connaissances, capacité déterminée entre autres par les comportements informationnels. Chargés de décisions stratégiques, tactiques et opérationnelles, les cadres intermédiaires sont au cœur du processus de création des connaissances, et leurs comportements informationnels doivent être soutenus par des systèmes d’information. Toutefois, leurs comportements informationnels sont peu documentés. La présente recherche porte sur la modélisation des comportements informationnels de cadres intermédiaires d’une organisation municipale. Plus spécifiquement, elle examine comment ces cadres répondent à leurs besoins d’information courante dans le contexte de leurs activités de gestion, c’est-à-dire dans leur environnement d’utilisation d’information. L’étude répond aux questions de recherche suivantes : (1) Quelles sont les situations problématiques auxquelles font face les cadres intermédiaires municipaux ? (2) Quels sont les besoins informationnels exprimés par les cadres intermédiaires municipaux lors de situations problématiques ? (3) Quelles sont les sources d’information qui soutiennent les comportements informationnels des cadres intermédiaires municipaux ? Cette recherche descriptive s’inscrit dans une approche qualitative. Les 21 cadres intermédiaires ayant participé à l’étude proviennent de deux arrondissements d’une municipalité québécoise fusionnée en 2002. Les modes de collecte de données sont l’entrevue en profondeur en personne et l’observation directe auprès de ces cadres, et la collecte de documentation pertinente. L’incident critique est utilisé comme technique de collecte de données et comme unité d’analyse. Les données recueillies font l’objet d’une analyse de contenu qualitative basée sur la théorisation ancrée. Les résultats indiquent que les rôles de gestion proposés dans les écrits pour les cadres supérieurs s’appliquent aussi aux cadres intermédiaires, bien que le rôle conseil ressorte comme étant particulier à ces derniers. Ceux-ci ont des responsabilités de gestion aux trois niveaux d’intervention opérationnel, tactique et stratégique, bien qu’ils œuvrent davantage au plan tactique. Les situations problématiques dont ils sont chargés s’inscrivent dans l’environnement d’utilisation d’information constitué des composantes suivantes : leurs rôles et responsabilités de gestion et le contexte organisationnel propre à une municipalité en transformation. Les cadres intermédiaires ont eu à traiter davantage de situations nouvelles que récurrentes, caractérisées par des sujets portant principalement sur les ressources matérielles et immobilières ou sur des aspects d’intérêt juridique, réglementaire et normatif. Ils ont surtout manifesté des besoins pour de l’information de nature processuelle et contextuelle. Pour y répondre, ils ont consulté davantage de sources verbales que documentaires, même si le nombre de ces dernières reste élevé, et ont préféré utiliser des sources d’information internes. Au plan théorique, le modèle de comportement informationnel proposé pour les cadres intermédiaires municipaux enrichit les principales composantes du modèle général d’utilisation de l’information (Choo, 1998) et du modèle d’environnement d’utilisation d’information (Taylor, 1986, 1991). L’étude permet aussi de préciser les concepts d’« utilisateur » et d’« utilisation de l’information ». Au plan pratique, la recherche permet d’aider à la conception de systèmes de repérage d’information adaptés aux besoins des cadres intermédiaires municipaux, et aide à évaluer l’apport des systèmes d’information archivistiques à la gestion de la mémoire organisationnelle.
Resumo:
Depuis quelques années, Internet est devenu un média incontournable pour la diffusion de ressources multilingues. Cependant, les différences linguistiques constituent souvent un obstacle majeur aux échanges de documents scientifiques, culturels, pédagogiques et commerciaux. En plus de cette diversité linguistique, on constate le développement croissant de bases de données et de collections composées de différents types de documents textuels ou multimédias, ce qui complexifie également le processus de repérage documentaire. En général, on considère l’image comme « libre » au point de vue linguistique. Toutefois, l’indexation en vocabulaire contrôlé ou libre (non contrôlé) confère à l’image un statut linguistique au même titre que tout document textuel, ce qui peut avoir une incidence sur le repérage. Le but de notre recherche est de vérifier l’existence de différences entre les caractéristiques de deux approches d’indexation pour les images ordinaires représentant des objets de la vie quotidienne, en vocabulaire contrôlé et en vocabulaire libre, et entre les résultats obtenus au moment de leur repérage. Cette étude suppose que les deux approches d’indexation présentent des caractéristiques communes, mais également des différences pouvant influencer le repérage de l’image. Cette recherche permet de vérifier si l’une ou l’autre de ces approches d’indexation surclasse l’autre, en termes d’efficacité, d’efficience et de satisfaction du chercheur d’images, en contexte de repérage multilingue. Afin d’atteindre le but fixé par cette recherche, deux objectifs spécifiques sont définis : identifier les caractéristiques de chacune des deux approches d’indexation de l’image ordinaire représentant des objets de la vie quotidienne pouvant influencer le repérage, en contexte multilingue et exposer les différences sur le plan de l’efficacité, de l’efficience et de la satisfaction du chercheur d’images à repérer des images ordinaires représentant des objets de la vie quotidienne indexées à l’aide d’approches offrant des caractéristiques variées, en contexte multilingue. Trois modes de collecte des données sont employés : l’analyse des termes utilisés pour l’indexation des images, la simulation du repérage d’un ensemble d’images indexées selon chacune des formes d’indexation à l’étude réalisée auprès de soixante répondants, et le questionnaire administré aux participants pendant et après la simulation du repérage. Quatre mesures sont définies pour cette recherche : l’efficacité du repérage d’images, mesurée par le taux de succès du repérage calculé à l’aide du nombre d’images repérées; l’efficience temporelle, mesurée par le temps, en secondes, utilisé par image repérée; l’efficience humaine, mesurée par l’effort humain, en nombre de requêtes formulées par image repérée et la satisfaction du chercheur d’images, mesurée par son autoévaluation suite à chaque tâche de repérage effectuée. Cette recherche montre que sur le plan de l’indexation de l’image ordinaire représentant des objets de la vie quotidienne, les approches d’indexation étudiées diffèrent fondamentalement l’une de l’autre, sur le plan terminologique, perceptuel et structurel. En outre, l’analyse des caractéristiques des deux approches d’indexation révèle que si la langue d’indexation est modifiée, les caractéristiques varient peu au sein d’une même approche d’indexation. Finalement, cette recherche souligne que les deux approches d’indexation à l’étude offrent une performance de repérage des images ordinaires représentant des objets de la vie quotidienne différente sur le plan de l’efficacité, de l’efficience et de la satisfaction du chercheur d’images, selon l’approche et la langue utilisées pour l’indexation.
Resumo:
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante.
Resumo:
L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur sur un ensemble de caractéristiques. Pour les tâches de MIR se basant sur l'audio musical, il est possible d'extraire de l'audio les caractéristiques pertinentes à l'aide de méthodes traitement de signal. Toutefois, certains aspects musicaux sont difficiles à extraire à l'aide de simples heuristiques. Afin d'obtenir des caractéristiques plus riches, il est possible d'utiliser l'AM pour apprendre une représentation musicale à partir de l'audio. Ces caractéristiques apprises permettent souvent d'améliorer la performance sur une tâche de MIR donnée. Afin d'apprendre des représentations musicales intéressantes, il est important de considérer les aspects particuliers à l'audio musical dans la conception des modèles d'apprentissage. Vu la structure temporelle et spectrale de l'audio musical, les représentations profondes et multiéchelles sont particulièrement bien conçues pour représenter la musique. Cette thèse porte sur l'apprentissage de représentations de l'audio musical. Des modèles profonds et multiéchelles améliorant l'état de l'art pour des tâches telles que la reconnaissance d'instrument, la reconnaissance de genre et l'étiquetage automatique y sont présentés.
Resumo:
Ce travail porte sur la construction d’un corpus étalon pour l’évaluation automatisée des extracteurs de termes. Ces programmes informatiques, conçus pour extraire automatiquement les termes contenus dans un corpus, sont utilisés dans différentes applications, telles que la terminographie, la traduction, la recherche d’information, l’indexation, etc. Ainsi, leur évaluation doit être faite en fonction d’une application précise. Une façon d’évaluer les extracteurs consiste à annoter toutes les occurrences des termes dans un corpus, ce qui nécessite un protocole de repérage et de découpage des unités terminologiques. À notre connaissance, il n’existe pas de corpus annoté bien documenté pour l’évaluation des extracteurs. Ce travail vise à construire un tel corpus et à décrire les problèmes qui doivent être abordés pour y parvenir. Le corpus étalon que nous proposons est un corpus entièrement annoté, construit en fonction d’une application précise, à savoir la compilation d’un dictionnaire spécialisé de la mécanique automobile. Ce corpus rend compte de la variété des réalisations des termes en contexte. Les termes sont sélectionnés en fonction de critères précis liés à l’application, ainsi qu’à certaines propriétés formelles, linguistiques et conceptuelles des termes et des variantes terminologiques. Pour évaluer un extracteur au moyen de ce corpus, il suffit d’extraire toutes les unités terminologiques du corpus et de comparer, au moyen de métriques, cette liste à la sortie de l’extracteur. On peut aussi créer une liste de référence sur mesure en extrayant des sous-ensembles de termes en fonction de différents critères. Ce travail permet une évaluation automatique des extracteurs qui tient compte du rôle de l’application. Cette évaluation étant reproductible, elle peut servir non seulement à mesurer la qualité d’un extracteur, mais à comparer différents extracteurs et à améliorer les techniques d’extraction.
Who influence the music tastes of adolescents? A study on interpersonal influence in social networks
Resumo:
Research on music information behavior demonstrates that people rely primarily on others to discover new music. This paper reports on a qualitative study aiming at exploring more in-depth how music information circulates within the social networks of late adolescents and the role the different people involved in the process play. In-depth interviews were conducted with 19 adolescents (15-17 years old). The analysis revealed that music opinion leaders showed eagerness to share music information, tended to seek music information on an ongoing basis, and were perceived as being more knowledgeable than others in music. It was found that the ties that connected participants to opinion leaders were predominantly strong ties, which suggests that trustworthiness is an important component of credibility. These findings could potentially help identify new avenues for the improvement of music recommender systems.
Resumo:
Les filtres de recherche bibliographique optimisés visent à faciliter le repérage de l’information dans les bases de données bibliographiques qui sont presque toujours la source la plus abondante d’évidences scientifiques. Ils contribuent à soutenir la prise de décisions basée sur les évidences. La majorité des filtres disponibles dans la littérature sont des filtres méthodologiques. Mais pour donner tout leur potentiel, ils doivent être combinés à des filtres permettant de repérer les études couvrant un sujet particulier. Dans le champ de la sécurité des patients, il a été démontré qu’un repérage déficient de l’information peut avoir des conséquences tragiques. Des filtres de recherche optimisés couvrant le champ pourraient s’avérer très utiles. La présente étude a pour but de proposer des filtres de recherche bibliographique optimisés pour le champ de la sécurité des patients, d’évaluer leur validité, et de proposer un guide pour l’élaboration de filtres de recherche. Nous proposons des filtres optimisés permettant de repérer des articles portant sur la sécurité des patients dans les organisations de santé dans les bases de données Medline, Embase et CINAHL. Ces filtres réalisent de très bonnes performances et sont spécialement construits pour les articles dont le contenu est lié de façon explicite au champ de la sécurité des patients par leurs auteurs. La mesure dans laquelle on peut généraliser leur utilisation à d’autres contextes est liée à la définition des frontières du champ de la sécurité des patients.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.