21 resultados para Quadratic
Resumo:
Un modèle de croissance et de réponse à la radiothérapie pour le glioblastome multiforme (GBM) basé le formalisme du modèle de prolifération-invasion (PI) et du modèle linéaire-quadratique a été développé et implémenté. La géométrie spécifique au patient est considérée en modélisant, d'une part, les voies d'invasion possibles des GBM avec l'imagerie du tenseur de diffusion (DTI) et, d'autre part, les barrières à la propagation à partir des images anatomiques disponibles. La distribution de dose réelle reçue par un patient donné est appliquée telle quelle dans les simulations, en respectant l'horaire de traitement. Les paramètres libres du modèle (taux de prolifération, coefficient de diffusion, paramètres radiobiologiques) sont choisis aléatoirement à partir de distributions de valeurs plausibles. Un total de 400 ensembles de valeurs pour les paramètres libres sont ainsi choisis pour tous les patients, et une simulation de la croissance et de la réponse au traitement est effectuée pour chaque patient et chaque ensemble de paramètres. Un critère de récidive est appliqué sur les résultats de chaque simulation pour identifier un lieu probable de récidive (SPR). La superposition de tous les SPR obtenus pour un patient donné permet de définir la probabilité d'occurrence (OP). Il est démontré qu'il existe des valeurs de OP élevées pour tous les patients, impliquant que les résultats du modèle PI ne sont pas très sensibles aux valeurs des paramètres utilisés. Il est également démontré comment le formalisme développé dans cet ouvrage pourrait permettre de définir un volume cible personnalisé pour les traitements de radiothérapie du GBM.
Resumo:
Les calculs numériques ont été effectués à l'aide du logiciel SAGE.
Resumo:
La lithographie et la loi de Moore ont permis des avancées extraordinaires dans la fabrication des circuits intégrés. De nos jours, plusieurs systèmes très complexes peuvent être embarqués sur la même puce électronique. Les contraintes de développement de ces systèmes sont tellement grandes qu’une bonne planification dès le début de leur cycle de développement est incontournable. Ainsi, la planification de la gestion énergétique au début du cycle de développement est devenue une phase importante dans la conception de ces systèmes. Pendant plusieurs années, l’idée était de réduire la consommation énergétique en ajoutant un mécanisme physique une fois le circuit créé, comme par exemple un dissipateur de chaleur. La stratégie actuelle est d’intégrer les contraintes énergétiques dès les premières phases de la conception des circuits. Il est donc essentiel de bien connaître la dissipation d’énergie avant l’intégration des composantes dans une architecture d’un système multiprocesseurs de façon à ce que chaque composante puisse fonctionner efficacement dans les limites de ses contraintes thermiques. Lorsqu’une composante fonctionne, elle consomme de l’énergie électrique qui est transformée en dégagement de chaleur. Le but de ce mémoire est de trouver une affectation efficace des composantes dans une architecture de multiprocesseurs en trois dimensions en tenant compte des limites des facteurs thermiques de ce système.
Resumo:
Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.
Resumo:
Dans ce mémoire, on s'intéresse à l'action du groupe des transformations affines et des homothéties sur l'axe du temps des systèmes différentiels quadratiques à foyer faible d'ordre trois, dans le plan. Ces systèmes sont importants dans le cadre du seizième problème d'Hilbert. Le diagramme de bifurcation a été produit à l'aide de la forme normale de Li dans des travaux de Andronova [2] et Artès et Llibre [4], sans utiliser le plan projectif comme espace des paramètres ni de méthodes globales. Dans [7], Llibre et Schlomiuk ont utilisé le plan projectif comme espace des paramètres et des notions à caractère géométrique global (invariants affines et topologiques). Ce diagramme contient 18 portraits de phase et certains de ces portraits sont répétés dans des parties distinctes du diagramme. Ceci nous mène à poser la question suivante : existe-t-il des systèmes distincts, correspondant à des valeurs distinctes de paramètres, se trouvant sur la même orbite par rapport à l'action du groupe? Dans ce mémoire, on prouve un résultat original : l'action du groupe n'est pas triviale sur la forme de Li (théorème 3.1), ni sur la forme normale de Bautin (théorème 4.1). En utilisant le deuxième résultat, on construit l'espace topologique quotient des systèmes quadratiques à foyer faible d'ordre trois par rapport à l'action de ce groupe.
Resumo:
Cette thèse traite de deux thèmes principaux. Le premier concerne l'étude des empilements apolloniens généralisés de cercles et de sphères. Généralisations des classiques empilements apolloniens, dont l'étude remonte à la Grèce antique, ces objets s'imposent comme particulièrement attractifs en théorie des nombres. Dans cette thèse sera étudié l'ensemble des courbures (les inverses des rayons) des cercles ou sphères de tels empilements. Sous de bonnes conditions, ces courbures s'avèrent être toutes entières. Nous montrerons qu'elles vérifient un principe local-global partiel, nous compterons le nombre de cercles de courbures plus petites qu'une quantité donnée et nous nous intéresserons également à l'étude des courbures premières. Le second thème a trait à la distribution angulaire des idéaux (ou plutôt ici des nombres idéaux) des corps de nombres quadratiques imaginaires (que l'on peut voir comme la distribution des points à coordonnées entières sur des ellipses). Nous montrerons que la discrépance de l'ensemble des angles des nombres idéaux entiers de norme donnée est faible et nous nous intéresserons également au problème des écarts bornés entre les premiers d'extensions quadratiques imaginaires dans des secteurs.