21 resultados para Polynomial Pencil


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La malhonnêteté académique au cours d’épreuves présente des enjeux importants quant à l’intégrité des évaluations. La présence des TIC étant de plus en plus importante en cours de passation dans les épreuves, il est important avec ce mode de récolte de données d’assurer un niveau de sécurité égal ou même supérieur à celui présent lorsqu’un mode de récolte de données traditionnel, le papier-crayon, est utilisé. Il existe plusieurs recherches sur l’utilisation des TIC dans l’évaluation, mais peu d’entre elles traitent des modalités de sécurité lors de l’utilisation des TIC. Dans ce mémoire, treize organisations québécoises ont été rencontrées: six qui utilisaient les TIC dans la passation, cinq qui utilisaient le papier-crayon dans la passation mais qui désiraient utiliser les TIC et deux qui utilisaient le papier-crayon et qui ne désiraient pas utiliser les TIC. Les organisations sont des établissements d’enseignement (primaire, secondaire, collégial, universitaire), des entreprises privées, des organismes gouvernementaux ou municipaux et des ordres professionnels. Des entrevues semi-structurées et une analyse qualitative par présence ou absence de différentes caractéristiques ont permis de documenter les modalités de sécurité liées à la récolte de données en vue de l’évaluation en utilisant les TIC. Ces modalités ont été comparées à celles utilisées lors de l’utilisation du papier-crayon dans la récolte de données en vue de l’évaluation afin de voir comment elles varient lors de l’utilisation des TIC. Les résultats révèlent que l’utilisation des TIC dans la passation complexifie et ajoute des étapes à la préparation des épreuves pour assurer un niveau de sécurité adéquat. Cependant elle permet également de nouvelles fonctions en ce qui concerne le type de questions, l’intégration de multimédia, l’utilisation de questions adaptatives et la génération aléatoire de l’épreuve qui permettent de contrer certaines formes de malhonnêteté académiques déjà présentes avec l’utilisation du papier-crayon dans la passation et pour lesquelles il était difficile d’agir. Toutefois, l’utilisation des TIC dans la passation peut aussi amener de nouvelles possibilités de malhonnêteté académique. Mais si ces dernières sont bien prises en considération, l’utilisation des TIC permet un niveau de sécurité des épreuves supérieur à celui où les données sont récoltées au traditionnel papier-crayon en vue de l’évaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce travail, j’étudierai principalement un modèle abélien de Higgs en 2+1 dimensions, dans lequel un champ scalaire interagit avec un champ de jauge. Des défauts topologiques, nommés vortex, sont créés lorsque le potentiel possède un minimum brisant spontanément la symétrie U(1). En 3+1 dimensions, ces vortex deviennent des défauts à une dimension. Ils ap- paraissent par exemple en matière condensée dans les supraconducteurs de type II comme des lignes de flux magnétique. J’analyserai comment l’énergie des solutions statiques dépend des paramètres du modèle et en particulier du nombre d’enroulement du vortex. Pour le choix habituel de potentiel (un poly- nôme quartique dit « BPS »), la relation entre les masses des deux champs mène à deux types de comportements : type I si la masse du champ de jauge est plus grande que celle du champ sca- laire et type II inversement. Selon le cas, la dépendance de l’énergie au nombre d’enroulement, n, indiquera si les vortex auront tendance à s’attirer ou à se repousser, respectivement. Lorsque le flux emprisonné est grand, les vortex présentent un profil où la paroi est mince, permettant certaines simplifications dans l’analyse. Le potentiel, un polynôme d’ordre six (« non-BPS »), est choisi tel que le centre du vortex se trouve dans le vrai vide (minimum absolu du potentiel) alors qu’à l’infini le champ scalaire se retrouve dans le faux vide (minimum relatif du potentiel). Le taux de désintégration a déjà été estimé par une approximation semi-classique pour montrer l’impact des défauts topologiques sur la stabilité du faux vide. Le projet consiste d’abord à établir l’existence de vortex classi- quement stables de façon numérique. Puis, ma contribution fut une analyse des paramètres du modèle révélant le comportement énergétique de ceux-ci en fonction du nombre d’enroulement. Ce comportement s’avèrera être différent du cas « BPS » : le ratio des masses ne réussit pas à décrire le comportement observé numériquement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire porte sur la simulation d'intervalles de crédibilité simultanés dans un contexte bayésien. Dans un premier temps, nous nous intéresserons à des données de précipitations et des fonctions basées sur ces données : la fonction de répartition empirique et la période de retour, une fonction non linéaire de la fonction de répartition. Nous exposerons différentes méthodes déjà connues pour obtenir des intervalles de confiance simultanés sur ces fonctions à l'aide d'une base polynomiale et nous présenterons une méthode de simulation d'intervalles de crédibilité simultanés. Nous nous placerons ensuite dans un contexte bayésien en explorant différents modèles de densité a priori. Pour le modèle le plus complexe, nous aurons besoin d'utiliser la simulation Monte-Carlo pour obtenir les intervalles de crédibilité simultanés a posteriori. Finalement, nous utiliserons une base non linéaire faisant appel à la transformation angulaire et aux splines monotones pour obtenir un intervalle de crédibilité simultané valide pour la période de retour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce mémoire, on étudie la désintégration d’un faux vide, c’est-à-dire un vide qui est un minimum relatif d’un potentiel scalaire par effet tunnel. Des défauts topologiques en 1+1 dimension, appelés kinks, apparaissent lorsque le potentiel possède un minimum qui brise spontanément une symétrie discrète. En 3+1 dimensions, ces kinks deviennent des murs de domaine. Ils apparaissent par exemple dans les matériaux magnétiques en matière condensée. Un modèle à deux champs scalaires couplés sera étudié ainsi que les solutions aux équations du mouvement qui en découlent. Ce faisant, on analysera comment l’existence et l’énergie des solutions statiques dépend des paramètres du modèle. Un balayage numérique de l’espace des paramètres révèle que les solutions stables se trouvent entre les zones de dissociation, des régions dans l’espace des paramètres où les solutions stables n’existent plus. Le comportement des solutions instables dans les zones de dissociation peut être très différent selon la zone de dissociation dans laquelle une solution se trouve. Le potentiel consiste, dans un premier temps, en un polynôme d’ordre six, auquel on y rajoute, dans un deuxième temps, un polynôme quartique multiplié par un terme de couplage, et est choisi tel que les extrémités du kink soient à des faux vides distincts. Le taux de désintégration a été estimé par une approximation semi-classique pour montrer l’impact des défauts topologiques sur la stabilité du faux vide. Le projet consiste à déterminer les conditions qui permettent aux kinks de catalyser la désintégration du faux vide. Il appert qu’on a trouvé une expression pour déterminer la densité critique de kinks et qu’on comprend ce qui se passe avec la plupart des termes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.