19 resultados para Nervous System Physiological Phenomena
Resumo:
La Sclérose en plaques (SEP) est une maladie auto-immune inflammatoire démyélinisante du système nerveux central (SNC), lors de laquelle des cellules inflammatoires du sang périphérique infiltrent le SNC pour y causer des dommages cellulaires. Dans ces réactions neuroinflammatoires, les cellules immunitaires traversent le système vasculaire du SNC, la barrière hémo-encéphalique (BHE), pour avoir accès au SNC et s’y accumuler. La BHE est donc la première entité que rencontrent les cellules inflammatoires du sang lors de leur migration au cerveau. Ceci lui confère un potentiel thérapeutique important pour influencer l’infiltration de cellules du sang vers le cerveau, et ainsi limiter les réactions neuroinflammatoires. En effet, les interactions entre les cellules immunitaires et les parois vasculaires sont encore mal comprises, car elles sont nombreuses et complexes. Différents mécanismes pouvant influencer la perméabilité de la BHE aux cellules immunitaires ont été décrits, et représentent aujourd’hui des cibles potentielles pour le contrôle des réactions neuro-immunes. Cette thèse a pour objectif de décrire de nouveaux mécanismes moléculaires opérant au niveau de la BHE qui interviennent dans les réactions neuroinflammatoires et qui ont un potentiel thérapeutique pour influencer les interactions neuro-immunologiques. Ce travail de doctorat est séparé en trois sections. La première section décrit la caractérisation du rôle de l’angiotensine II dans la régulation de la perméabilité de la BHE. La seconde section identifie et caractérise la fonction d’une nouvelle molécule d’adhérence de la BHE, ALCAM, dans la transmigration de cellules inflammatoires du sang vers le SNC. La troisième section traite des propriétés sécrétoires de la BHE et du rôle de la chimiokine MCP-1 dans les interactions entre la BHE et les cellules souches. Dans un premier temps, nous démontrons l’importance de l’angiotensinogène (AGT) dans la régulation de la perméabilité de la BHE. L’AGT est sécrété par les astrocytes et métabolisé en angiotensine II pour pouvoir agir au niveau des CE de la BHE à travers le récepteur à l’angiotensine II, AT1 et AT2. Au niveau de la BHE, l’angiotensine II entraîne la phosphorylation et l’enrichissement de l’occludine au sein de radeaux lipidiques, un phénomène associé à l’augmentation de l’étanchéité de la BHE. De plus, dans les lésions de SEP, on retrouve une diminution de l’expression de l’AGT et de l’occludine. Ceci est relié à nos observations in vitro, qui démontrent que des cytokines pro-inflammatoires limitent la sécrétion de l’AGT. Cette étude élucide un nouveau mécanisme par lequel les astrocytes influencent et augmentent l’étanchéité de la BHE, et implique une dysfonction de ce mécanisme dans les lésions de la SEP où s’accumulent les cellules inflammatoires. Dans un deuxième temps, les techniques établies dans la première section ont été utilisées afin d’identifier les protéines de la BHE qui s’accumulent dans les radeaux lipidiques. En utilisant une technique de protéomique nous avons identifié ALCAM (Activated Leukocyte Cell Adhesion Molecule) comme une protéine membranaire exprimée par les CE de la BHE. ALCAM se comporte comme une molécule d’adhérence typique. En effet, ALCAM permet la liaison entre les cellules du sang et la paroi vasculaire, via des interactions homotypiques (ALCAM-ALCAM pour les monocytes) ou hétérotypiques (ALCAM-CD6 pour les lymphocytes). Les cytokines inflammatoires augmentent le niveau d’expression d’ALCAM par la BHE, ce qui permet un recrutement local de cellules inflammatoires. Enfin, l’inhibition des interactions ALCAM-ALCAM et ALCAM-CD6 limite la transmigration des cellules inflammatoires (monocytes et cellules T CD4+) à travers la BHE in vitro et in vivo dans un modèle murin de la SEP. Cette deuxième partie identifie ALCAM comme une cible potentielle pour influencer la transmigration de cellules inflammatoires vers le cerveau. Dans un troisième temps, nous avons pu démontrer l’importance des propriétés sécrétoires spécifiques à la BHE dans les interactions avec les cellules souches neurales (CSN). Les CSN représentent un potentiel thérapeutique unique pour les maladies du SNC dans lesquelles la régénération cellulaire est limitée, comme dans la SEP. Des facteurs qui limitent l’utilisation thérapeutique des CSN sont le mode d’administration et leur maturation en cellules neurales ou gliales. Bien que la route d’administration préférée pour les CSN soit la voie intrathécale, l’injection intraveineuse représente la voie d’administration la plus facile et la moins invasive. Dans ce contexte, il est important de comprendre les interactions possibles entre les cellules souches et la paroi vasculaire du SNC qui sera responsable de leur recrutement dans le parenchyme cérébral. En collaborant avec des chercheurs de la Belgique spécialisés en CSN, nos travaux nous ont permis de confirmer, in vitro, que les cellules souches neurales humaines migrent à travers les CE humaines de la BHE avant d’entamer leur différenciation en cellules du SNC. Suite à la migration à travers les cellules de la BHE les CSN se différencient spontanément en neurones, en astrocytes et en oligodendrocytes. Ces effets sont notés préférentiellement avec les cellules de la BHE par rapport aux CE non cérébrales. Ces propriétés spécifiques aux cellules de la BHE dépendent de la chimiokine MCP-1/CCL2 sécrétée par ces dernières. Ainsi, cette dernière partie suggère que la BHE n’est pas un obstacle à la migration de CSN vers le SNC. De plus, la chimiokine MCP-1 est identifiée comme un facteur sécrété par la BHE qui permet l’accumulation et la différentiation préférentielle de cellules souches neurales dans l’espace sous-endothélial. Ces trois études démontrent l’importance de la BHE dans la migration des cellules inflammatoires et des CSN vers le SNC et indiquent que de multiples mécanismes moléculaires contribuent au dérèglement de l’homéostasie du SNC dans les réactions neuro-immunes. En utilisant des modèles in vitro, in situ et in vivo, nous avons identifié trois nouveaux mécanismes qui permettent d’influencer les interactions entre les cellules du sang et la BHE. L’identification de ces mécanismes permet non seulement une meilleure compréhension de la pathophysiologie des réactions neuroinflammatoires du SNC et des maladies qui y sont associées, mais suggère également des cibles thérapeutiques potentielles pour influencer l’infiltration des cellules du sang vers le cerveau
Resumo:
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique.
Resumo:
Dans le système nerveux central, la dopamine joue un rôle crucial dans de nombreuses fonctions physiologiques telles que : l’apprentissage, le mouvement volontaire, la motivation, la cognition et la production hormonale. Il a été aussi démontré que le système de signalisation dopaminergique est altéré dans plusieurs maladies neurologiques et psychiatriques comme la maladie de Parkinson et la schizophrénie. Des études, effectuées dans le laboratoire du Dr.Daniel Lévesque (laboratoire d’accueil), ont montré que les récepteurs nucléaires Nur77 (NR4A1, NGFI-B) et RXRγ (retinoid X receptors γ) sont impliqués dans la régulation des effets de la dopamine dans le système nerveux central. De plus, ces données suggèrent que le complexe Nur77 et RXR joueraient un rôle crucial dans l’effet des médicaments antipsychotiques et antiparkinsoniens. Toutefois, très peu de médicaments ciblant Nur77 ont été identifiés à ce jour et les médicaments agissant sur RXRγ restent mal caractérisés. En outre, les analyses actuellement disponibles ne peuvent pas résumer la complexité des activités des NRs et génèrent des mesures indirectes des activités des drogues. Afin de mieux comprendre comment est régulée l’interaction Nur77/RXRγ dans ces processus, mon projet a été de mettre au point un essai BRET (Bioluminescence Resonance Energy Transfer) et PCA-BRET (Protein Complementation Assay-BRET) basé sur le recrutement d'un motif mimant un co-activateur fusionné avec la YFP. Nos différents essais ont été validés par courbes dose-réponse en utilisant différents composés RXR . Les EC50 (concentration efficace médiane, qui permet de mesurer l'efficacité d'un composé) obtenues étaient très semblables aux valeurs précédemment rapportées dans la littérature. Nous avons aussi pu identifier un composé le SR11237 (BMS649) qui semble posséder une sélectivité pour le complexe Nur77/RXRγ par rapport aux complexes Nurr1/RXRγ et RXRγ /RXRγ. Nos résultats indiquent que ces essais de BRET peuvent être utilisés pour évaluer la sélectivité de nouveaux composés pour les complexes Nur77/RXRγ, Nurr1/RXRγ et RXRγ /RXRγ. Un autre aspect de mon projet de doctorat a été de mettre en évidence par BRET l’importance de la SUMOylation dans la régulation de l'activité de Nur77 dans sa forme monomèrique, homodimèrique et hétérodimèrique. Nous avons ainsi identifié que Nur77 recrute principalement SUMO2 sur sa lysine 577. Il est intéressant de noté que le recrutement de la SUMO2 à Nur77 est potentialisé en présence de la SUMO E3 Ligase PIASγ. Aussi, la perte de la SUMOylation sur la lysine 577 entraîne l'incapacité de Nur77 de recruter divers motifs de co-activation mais pas pour ses formes homo- et hétérodimèrique. Cependant, la présence de PIASγ ne potentialise pas le recrutement du co-activateur, suggérant que cette SUMO E3 Ligase est seulement impliqué dans le processus de recrutement de la SUMO mais pas dans celui du co-activateur. Nous avons ainsi déterminé une nouvelle modification post-traductionnelle sur Nur77 régulant spécifiquement son activité monomérique Ces projets pourraient donc apporter de nouvelles données cruciales pour l’amélioration du traitement de la maladie de Parkinson ou de la schizophrénie, ainsi que d'obtenir une meilleure compréhension sur les mécanismes permettant la régulation de la fonction de Nur77
Resumo:
L’insuffisance cardiaque (IC) est un problème d’importance grandissante lié à des perturbations des systèmes nerveux autonome, immunitaire, et cardiovasculaire. Ces perturbations contribuent à plusieurs symptômes physiques et psychologiques invalidants. La recherche faite jusqu’ici sur des programmes d’exercice basés sur le yoga a démontré des résultats préliminaires assez prometteurs en IC. Néanmoins, il reste des lacunes à combler dans la littérature face aux populations testées, à la combinaison des mesures physiques et psychologiques, au suivi du traitement à la maison et à la perception des symptômes au quotidien. Ce projet pilote a donc pour objectif de développer un programme d’exercice complémentaire basé sur le yoga adapté aux patients souffrant d’IC, d’en mesurer la faisabilité et l’acceptabilité en plus d’obtenir des données préliminaires quant à l’impact de cette intervention à réduire la symptomatologie physique et psychologique et d’améliorer la qualité de vie (QV) de ces patients. Les deux premiers participants recrutés dans le cadre de l’étude pilote font l’objet de ce mémoire. Ils ont pris part à huit séances hebdomadaires de yoga Bali, couplé de psychoéducation et méditation tous données à l’Institut de Cardiologie de Montréal par une instructrice certifiée dans la méthode BALI. L’élaboration des outils nécessaires au déroulement du programme, y compris le manuel d’enseignement et le DVD, la faisabilité d’une collaboration avec le personnel médical et évidement l’évaluation des effets du programme en soit sur les symptômes physiques et psychologique s sont parmi les sujets abordés. Les résultats, quoique préliminaires, semblent tendre vers une amélioration des corrélats physiologiques liés à l’insuffisance cardiaque, notamment l’activité du système nerveux autonome tel que témoigné par la variabilité de la fréquence cardiaque, et l’inflammation indiqué par le niveau de CRP sanguin.