21 resultados para Natural Language Queries, NLPX, Bricks, XML-IR, Users


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans cette dissertation, nous présentons plusieurs techniques d’apprentissage d’espaces sémantiques pour plusieurs domaines, par exemple des mots et des images, mais aussi à l’intersection de différents domaines. Un espace de représentation est appelé sémantique si des entités jugées similaires par un être humain, ont leur similarité préservée dans cet espace. La première publication présente un enchaînement de méthodes d’apprentissage incluant plusieurs techniques d’apprentissage non supervisé qui nous a permis de remporter la compétition “Unsupervised and Transfer Learning Challenge” en 2011. Le deuxième article présente une manière d’extraire de l’information à partir d’un contexte structuré (177 détecteurs d’objets à différentes positions et échelles). On montrera que l’utilisation de la structure des données combinée à un apprentissage non supervisé permet de réduire la dimensionnalité de 97% tout en améliorant les performances de reconnaissance de scènes de +5% à +11% selon l’ensemble de données. Dans le troisième travail, on s’intéresse à la structure apprise par les réseaux de neurones profonds utilisés dans les deux précédentes publications. Plusieurs hypothèses sont présentées et testées expérimentalement montrant que l’espace appris a de meilleures propriétés de mixage (facilitant l’exploration de différentes classes durant le processus d’échantillonnage). Pour la quatrième publication, on s’intéresse à résoudre un problème d’analyse syntaxique et sémantique avec des réseaux de neurones récurrents appris sur des fenêtres de contexte de mots. Dans notre cinquième travail, nous proposons une façon d’effectuer de la recherche d’image ”augmentée” en apprenant un espace sémantique joint où une recherche d’image contenant un objet retournerait aussi des images des parties de l’objet, par exemple une recherche retournant des images de ”voiture” retournerait aussi des images de ”pare-brises”, ”coffres”, ”roues” en plus des images initiales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire tente de répondre à une problématique très importante dans le domaine de recrutement : l’appariement entre offre d’emploi et candidats. Dans notre cas nous disposons de milliers d’offres d’emploi et de millions de profils ramassés sur les sites dédiés et fournis par un industriel spécialisé dans le recrutement. Les offres d’emploi et les profils de candidats sur les réseaux sociaux professionnels sont généralement destinés à des lecteurs humains qui sont les recruteurs et les chercheurs d’emploi. Chercher à effectuer une sélection automatique de profils pour une offre d’emploi se heurte donc à certaines difficultés que nous avons cherché à résoudre dans le présent mémoire. Nous avons utilisé des techniques de traitement automatique de la langue naturelle pour extraire automatiquement les informations pertinentes dans une offre d’emploi afin de construite une requête qui nous permettrait d’interroger notre base de données de profils. Pour valider notre modèle d’extraction de métier, de compétences et de d’expérience, nous avons évalué ces trois différentes tâches séparément en nous basant sur une référence cent offres d’emploi canadiennes que nous avons manuellement annotée. Et pour valider notre outil d’appariement nous avons fait évaluer le résultat de l’appariement de dix offres d’emploi canadiennes par un expert en recrutement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les modèles de compréhension statistiques appliqués à des applications vocales nécessitent beaucoup de données pour être entraînés. Souvent, une même application doit pouvoir supporter plusieurs langues, c’est le cas avec les pays ayant plusieurs langues officielles. Il s’agit donc de gérer les mêmes requêtes des utilisateurs, lesquelles présentent une sémantique similaire, mais dans plusieurs langues différentes. Ce projet présente des techniques pour déployer automatiquement un modèle de compréhension statistique d’une langue source vers une langue cible. Ceci afin de réduire le nombre de données nécessaires ainsi que le temps relié au déploiement d’une application dans une nouvelle langue. Premièrement, une approche basée sur les techniques de traduction automatique est présentée. Ensuite une approche utilisant un espace sémantique commun pour comparer plusieurs langues a été développée. Ces deux méthodes sont comparées pour vérifier leurs limites et leurs faisabilités. L’apport de ce projet se situe dans l’amélioration d’un modèle de traduction grâce à l’ajout de données très proche de l’application ainsi que d’une nouvelle façon d’inférer un espace sémantique multilingue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multilingual terminological resources do not always include valid equivalents of legal terms for two main reasons. Firstly, legal systems can differ from one language community to another and even from one country to another because each has its own history and traditions. As a result, the non-isomorphism between legal and linguistic systems may render the identification of equivalents a particularly challenging task. Secondly, by focusing primarily on the definition of equivalence, a notion widely discussed in translation but not in terminology, the literature does not offer solid and systematic methodologies for assigning terminological equivalents. As a result, there is a lack of criteria to guide both terminologists and translators in the search and validation of equivalent terms. This problem is even more evident in the case of predicative units, such as verbs. Although some terminologists (L‘Homme 1998; Lerat 2002; Lorente 2007) have worked on specialized verbs, terminological equivalence between units that belong to this part of speech would benefit from a thorough study. By proposing a novel methodology to assign the equivalents of specialized verbs, this research aims at defining validation criteria for this kind of predicative units, so as to contribute to a better understanding of the phenomenon of terminological equivalence as well as to the development of multilingual terminography in general, and to the development of legal terminography, in particular. The study uses a Portuguese-English comparable corpus that consists of a single genre of texts, i.e. Supreme Court judgments, from which 100 Portuguese and 100 English specialized verbs were selected. The description of the verbs is based on the theory of Frame Semantics (Fillmore 1976, 1977, 1982, 1985; Fillmore and Atkins 1992), on the FrameNet methodology (Ruppenhofer et al. 2010), as well as on the methodology for compiling specialized lexical resources, such as DiCoInfo (L‘Homme 2008), developed in the Observatoire de linguistique Sens-Texte at the Université de Montréal. The research reviews contributions that have adopted the same theoretical and methodological framework to the compilation of lexical resources and proposes adaptations to the specific objectives of the project. In contrast to the top-down approach adopted by FrameNet lexicographers, the approach described here is bottom-up, i.e. verbs are first analyzed and then grouped into frames for each language separately. Specialized verbs are said to evoke a semantic frame, a sort of conceptual scenario in which a number of mandatory elements (core Frame Elements) play specific roles (e.g. ARGUER, JUDGE, LAW), but specialized verbs are often accompanied by other optional information (non-core Frame Elements), such as the criteria and reasons used by the judge to reach a decision (statutes, codes, previous decisions). The information concerning the semantic frame that each verb evokes was encoded in an xml editor and about twenty contexts illustrating the specific way each specialized verb evokes a given frame were semantically and syntactically annotated. The labels attributed to each semantic frame (e.g. [Compliance], [Verdict]) were used to group together certain synonyms, antonyms as well as equivalent terms. The research identified 165 pairs of candidate equivalents among the 200 Portuguese and English terms that were grouped together into 76 frames. 71% of the pairs of equivalents were considered full equivalents because not only do the verbs evoke the same conceptual scenario but their actantial structures, the linguistic realizations of the actants and their syntactic patterns were similar. 29% of the pairs of equivalents did not entirely meet these criteria and were considered partial equivalents. Reasons for partial equivalence are provided along with illustrative examples. Finally, the study describes the semasiological and onomasiological entry points that JuriDiCo, the bilingual lexical resource compiled during the project, offers to future users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives In April 2010, the Université de Montréal’s Health Sciences Library has implemented shared filters in its institutional PubMed account. Most of these filters are designed to highlight resources for evidence-based practice, such as Clinical Queries, Systematic Reviews and Evidence-based Synopsis. We now want to measure how those filters are perceived and used by our users. Methods For one month, data was gathered through an online questionnaire proposed to users of Université de Montréal’s PubMed account. A print version was also distributed to participants in information literacy workshops given by the health sciences librarians. Respondents were restricted to users affiliated to Université de Montréal’s faculties of Medicine, Dentistry, Veterinary Sciences, Nursing and Pharmacy. Basic user information such as year/program of study or department affiliation was also collected. The questionnaire allowed users to identify the filters they use, assess the relevance of filters, and also suggest new ones. Results Survey results showed that the shared filters of Université de Montreal’s PubMed account were found useful by the majority of respondents. Filters allowing rapid access to secondary resources ranked among the most relevant (Reviews, Systematic Reviews, Cochrane Database of Systematic Reviews, Practice Guidelines and Clinical Evidence). For Clinical Study Queries, Randomized Controlled Trial (Therapy/Narrow) was considered the most useful. Some new shared filters have been suggested by respondents. Finally, 18% of the respondents indicated that they did not quite understand the relevance of filters. Conclusion Based on the survey results, shared filters considered most useful will be kept, some will be enhanced and others removed so that suggested ones could be added. The fact that some respondents did not understand well the relevance of filters could potentially be addressed through our PubMed workshops, online library guides or by renaming some filters in a more meaningful way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur permettent de trouver rapidement les informations ou les produits qu'ils veulent. La recherche d'information (IR) est le fondement de moteurs de recherche modernes. Les approches traditionnelles de recherche d'information supposent que les termes d'indexation sont indépendants. Pourtant, les termes qui apparaissent dans le même contexte sont souvent dépendants. L’absence de la prise en compte de ces dépendances est une des causes de l’introduction de bruit dans le résultat (résultat non pertinents). Certaines études ont proposé d’intégrer certains types de dépendance, tels que la proximité, la cooccurrence, la contiguïté et de la dépendance grammaticale. Dans la plupart des cas, les modèles de dépendance sont construits séparément et ensuite combinés avec le modèle traditionnel de mots avec une importance constante. Par conséquent, ils ne peuvent pas capturer correctement la dépendance variable et la force de dépendance. Par exemple, la dépendance entre les mots adjacents "Black Friday" est plus importante que celle entre les mots "road constructions". Dans cette thèse, nous étudions différentes approches pour capturer les relations des termes et de leurs forces de dépendance. Nous avons proposé des méthodes suivantes: ─ Nous réexaminons l'approche de combinaison en utilisant différentes unités d'indexation pour la RI monolingue en chinois et la RI translinguistique entre anglais et chinois. En plus d’utiliser des mots, nous étudions la possibilité d'utiliser bi-gramme et uni-gramme comme unité de traduction pour le chinois. Plusieurs modèles de traduction sont construits pour traduire des mots anglais en uni-grammes, bi-grammes et mots chinois avec un corpus parallèle. Une requête en anglais est ensuite traduite de plusieurs façons, et un score classement est produit avec chaque traduction. Le score final de classement combine tous ces types de traduction. Nous considérons la dépendance entre les termes en utilisant la théorie d’évidence de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) dans un document est considérée comme représentant l'ensemble de tous les termes constituants. La probabilité est assignée à un tel ensemble de termes plutôt qu’a chaque terme individuel. Au moment d’évaluation de requête, cette probabilité est redistribuée aux termes de la requête si ces derniers sont différents. Cette approche nous permet d'intégrer les relations de dépendance entre les termes. Nous proposons un modèle discriminant pour intégrer les différentes types de dépendance selon leur force et leur utilité pour la RI. Notamment, nous considérons la dépendance de contiguïté et de cooccurrence à de différentes distances, c’est-à-dire les bi-grammes et les paires de termes dans une fenêtre de 2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dépendants est déterminé selon un ensemble des caractères, en utilisant la régression SVM. Toutes les méthodes proposées sont évaluées sur plusieurs collections en anglais et/ou chinois, et les résultats expérimentaux montrent que ces méthodes produisent des améliorations substantielles sur l'état de l'art.