17 resultados para Model of deontological reflexivity
Resumo:
I provide choice-theoretic foundations for a simple two-stage model, called transitive shortlist methods, where choices are made by sequentially by applying a pair of transitive preferences (or rationales) to eliminate inferior alternatives. Despite its simplicity, the model accommodates a wide range of choice phenomena including the status quo bias, framing, homophily, compromise, and limited willpower. I establish that the model can be succinctly characterized in terms of some well-documented context effects in choice. I also show that the underlying rationales are straightforward to determine from readily observable reversals in choice. Finally, I highlight the usefulness of these results in a variety of applications.
Resumo:
There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.