31 resultados para Market premium
Resumo:
We consider the following question: does market failure justify redistribution? We argue that the general answer to this question is no, in the sense that policies for correcting market failures do not aim at producing a "desirable" income distribution. This follows from the fact that, by construction, market failure is a deviation from "efficiency" that does not involve any notion of a desirable distribution of welfare (or income). However, there are special cases where a "corrective measure" involving redistribution can offset a market failure, so this can provide a form of efficiency- based justification for redistribution.
Resumo:
In this paper we provide a thorough characterization of the asset returns implied by a simple general equilibrium production economy with Chew–Dekel risk preferences and convex capital adjustment costs. When households display levels of disappointment aversion consistent with the experimental evidence, a version of the model parameterized to match the volatility of output and consumption growth generates unconditional expected asset returns and price of risk in line with the historical data. For the model with Epstein–Zin preferences to generate similar statistics, the relative risk aversion coefficient needs to be about 55, two orders of magnitude higher than the available estimates. We argue that this is not surprising, given the limited risk imposed on agents by a reasonably calibrated stochastic growth model.
Resumo:
Cette thèse examine les effets des imperfections des marchés financiers sur la macroéconomie. Plus particulièrement, elle se penche sur les conséquences de la faillite dans les contrats financiers dans une perspective d'équilibre général dynamique. Le premier papier construit un modèle qui utilise l'avantage comparatif des banques dans la gestion des situations de détresse financière pour expliquer le choix des firmes entre les prêts bancaires et les prêts du marché financier. Le modèle réussit à expliquer pourquoi les firmes plus petites préfèrent le financement bancaire et pourquoi les prêts bancaires sont plus répandus en Europe. Le premier fait est expliqué par le lien négatif entre la valeur nette de l'entreprise et la probabilité de faire faillite. Le deuxième fait s'explique par le coût fixe d'émission de bons plus élevé en Europe. Le deuxième papier examine l'interaction entre les contraintes de financement affectant les ménages et les firmes. Une interaction positive pourrait amplifier et augmenter la persistance de l'effet d'un choc agrégé sur l'économie. Je construis un nouveau modèle qui contient des primes de financement externes pour les firmes et les ménages. Dans le modèle de base avec prix et salaires flexibles, j'obtiens une faible interaction négative entre les coûts de financement des firmes et des ménages. Le facteur clé qui explique ce résultat est l'effet du changement contre cyclique du coût de financement des ménages sur leur offre de travail et leur demande de prêts. Dans une période d'expansion, cet effet augmente les taux d'intérêt, réduit l'investissement et augmente le coût de financement des entreprises. Le troisième papier ajoute les contraintes de financement des banques dans un modèle macroéconomiques avec des prêts hypothécaires et des fluctuations dans les prix de l'immobilier. Les banques dans le modèle ne peuvent pas complètement diversifier leurs prêts, ce qui génère un lien entre les risques de faillite des ménages et des banques. Il y a deux effets contraires des cycles économiques qui affectent la prime de financement externe de la banque. Premièrement, il y a un lien positif entre le risque de faillite des banques et des emprunteurs qui contribue à rendre le coût de financement externe des banques contre cyclique. Deuxiément, le lissage de la consommation par les ménages rend la proportion de financement externe des banques pro cyclique, ce qui tend à rendre le coût de financement bancaire pro cyclique. En combinant ces deux effets, le modèle peut reproduire des profits bancaires et des ratios d'endettement bancaires pro cycliques comme dans les données, mais pour des chocs non-financiers les frictions de financement bancaire dans le modèle n'ont pas un effet quantitativement significatif sur les principales variables agrégées comme la consommation ou l'investissement.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
Information recueillie sur les marchés des drogues de synthèse est beaucoup moins avancée que les études sur d'autres marchés de drogues illicites. La classification relativement récente des drogues de synthèse comme substances illicites, couplée avec ses caractéristiques distinctes qui empêchent son observation, a entravé le développement d’évaluations complètes et fiables des caractéristiques structurelles des marchés. Le but de cet article est de fournir un aperçu fiable sur la dynamique interne du marché des drogues synthétiques, en particulier sur ses caractéristiques structurelles et organisationnelles. En utilisant l'information obtenue à partir de 365 drogues de synthèse saisies par les policiers pendant un an, cette étude sera la fusion de deux techniques, soit la composition des drogues illicites et des analyses économiques, afin de tirer des évaluations fiables des caractéristiques structurelles du marché du Québec de drogues synthétiques. Les résultats concernant l'analyse de la composition des drogues indiquent que le marché des drogues synthétiques au Québec est probablement composé d'un nombre élevé de petites structures, ce qui indique un marché compétitif. L'analyse économique a également fourni des informations complémentaires sur le marché des drogues. Selon la région géographique les couts de la production et les relations entre trafiquant et consommateur influencent le prix des drogues. Les résultats de cette recherche mettent l'accent sur la nécessité de concevoir des politiques qui tient compte des différences régionales dans la production de drogue et reflète la nature compétitive de ce marché.
Resumo:
La croissance dramatique du commerce électronique des titres cache un grand potentiel pour les investisseurs, de même que pour l’industrie des valeurs mobilières en général. Prenant en considération ses risques particuliers, les autorités réglementaires vivent un défi important face à l’Internet en tant que nouveau moyen d’investir. Néanmoins, malgré l’évolution technologique, les objectifs fondamentaux et l’approche des autorités réglementaires restent similaires à ce qui se produit présentement. Cet article analyse l’impact de l’Internet sur le commerce des valeurs mobilières en se concentrant sur les problèmes soulevés par l’utilisation de ce nouveau moyen de communication dans le contexte du marché secondaire. Par conséquent, son objectif est de dresser le portrait des plaintes typiques des investisseurs, de même que celui des activités frauduleuses en valeurs mobilières propres au cyberespace. L’auteur fait une synthèse des développements récents en analysant l’approche des autorités réglementaires, les études doctrinales, la jurisprudence et les cas administratifs. L'auteure désire remercier la professeure Raymonde Crête pour ses précieux commentaires et conseils.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Continuous exact non-atomic games are naturally associated to certain operators between Banach spaces. It thus makes sense to study games by means of the corresponding operators. We characterize non-atomic exact market games in terms of the properties of the associated operators. We also prove a separation theorem for weak compact sets of countably additive measures, which is of independent interest.
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
Resumo:
Les questions abordées dans les deux premiers articles de ma thèse cherchent à comprendre les facteurs économiques qui affectent la structure à terme des taux d'intérêt et la prime de risque. Je construis des modèles non linéaires d'équilibre général en y intégrant des obligations de différentes échéances. Spécifiquement, le premier article a pour objectif de comprendre la relation entre les facteurs macroéconomiques et le niveau de prime de risque dans un cadre Néo-keynésien d'équilibre général avec incertitude. L'incertitude dans le modèle provient de trois sources : les chocs de productivité, les chocs monétaires et les chocs de préférences. Le modèle comporte deux types de rigidités réelles à savoir la formation des habitudes dans les préférences et les coûts d'ajustement du stock de capital. Le modèle est résolu par la méthode des perturbations à l'ordre deux et calibré à l'économie américaine. Puisque la prime de risque est par nature une compensation pour le risque, l'approximation d'ordre deux implique que la prime de risque est une combinaison linéaire des volatilités des trois chocs. Les résultats montrent qu'avec les paramètres calibrés, les chocs réels (productivité et préférences) jouent un rôle plus important dans la détermination du niveau de la prime de risque relativement aux chocs monétaires. Je montre que contrairement aux travaux précédents (dans lesquels le capital de production est fixe), l'effet du paramètre de la formation des habitudes sur la prime de risque dépend du degré des coûts d'ajustement du capital. Lorsque les coûts d'ajustement du capital sont élevés au point que le stock de capital est fixe à l'équilibre, une augmentation du paramètre de formation des habitudes entraine une augmentation de la prime de risque. Par contre, lorsque les agents peuvent librement ajuster le stock de capital sans coûts, l'effet du paramètre de la formation des habitudes sur la prime de risque est négligeable. Ce résultat s'explique par le fait que lorsque le stock de capital peut être ajusté sans coûts, cela ouvre un canal additionnel de lissage de consommation pour les agents. Par conséquent, l'effet de la formation des habitudes sur la prime de risque est amoindri. En outre, les résultats montrent que la façon dont la banque centrale conduit sa politique monétaire a un effet sur la prime de risque. Plus la banque centrale est agressive vis-à-vis de l'inflation, plus la prime de risque diminue et vice versa. Cela est due au fait que lorsque la banque centrale combat l'inflation cela entraine une baisse de la variance de l'inflation. Par suite, la prime de risque due au risque d'inflation diminue. Dans le deuxième article, je fais une extension du premier article en utilisant des préférences récursives de type Epstein -- Zin et en permettant aux volatilités conditionnelles des chocs de varier avec le temps. L'emploi de ce cadre est motivé par deux raisons. D'abord des études récentes (Doh, 2010, Rudebusch and Swanson, 2012) ont montré que ces préférences sont appropriées pour l'analyse du prix des actifs dans les modèles d'équilibre général. Ensuite, l'hétéroscedasticité est une caractéristique courante des données économiques et financières. Cela implique que contrairement au premier article, l'incertitude varie dans le temps. Le cadre dans cet article est donc plus général et plus réaliste que celui du premier article. L'objectif principal de cet article est d'examiner l'impact des chocs de volatilités conditionnelles sur le niveau et la dynamique des taux d'intérêt et de la prime de risque. Puisque la prime de risque est constante a l'approximation d'ordre deux, le modèle est résolu par la méthode des perturbations avec une approximation d'ordre trois. Ainsi on obtient une prime de risque qui varie dans le temps. L'avantage d'introduire des chocs de volatilités conditionnelles est que cela induit des variables d'état supplémentaires qui apportent une contribution additionnelle à la dynamique de la prime de risque. Je montre que l'approximation d'ordre trois implique que les primes de risque ont une représentation de type ARCH-M (Autoregressive Conditional Heteroscedasticty in Mean) comme celui introduit par Engle, Lilien et Robins (1987). La différence est que dans ce modèle les paramètres sont structurels et les volatilités sont des volatilités conditionnelles de chocs économiques et non celles des variables elles-mêmes. J'estime les paramètres du modèle par la méthode des moments simulés (SMM) en utilisant des données de l'économie américaine. Les résultats de l'estimation montrent qu'il y a une évidence de volatilité stochastique dans les trois chocs. De plus, la contribution des volatilités conditionnelles des chocs au niveau et à la dynamique de la prime de risque est significative. En particulier, les effets des volatilités conditionnelles des chocs de productivité et de préférences sont significatifs. La volatilité conditionnelle du choc de productivité contribue positivement aux moyennes et aux écart-types des primes de risque. Ces contributions varient avec la maturité des bonds. La volatilité conditionnelle du choc de préférences quant à elle contribue négativement aux moyennes et positivement aux variances des primes de risque. Quant au choc de volatilité de la politique monétaire, son impact sur les primes de risque est négligeable. Le troisième article (coécrit avec Eric Schaling, Alain Kabundi, révisé et resoumis au journal of Economic Modelling) traite de l'hétérogénéité dans la formation des attentes d'inflation de divers groupes économiques et de leur impact sur la politique monétaire en Afrique du sud. La question principale est d'examiner si différents groupes d'agents économiques forment leurs attentes d'inflation de la même façon et s'ils perçoivent de la même façon la politique monétaire de la banque centrale (South African Reserve Bank). Ainsi on spécifie un modèle de prédiction d'inflation qui nous permet de tester l'arrimage des attentes d'inflation à la bande d'inflation cible (3% - 6%) de la banque centrale. Les données utilisées sont des données d'enquête réalisée par la banque centrale auprès de trois groupes d'agents : les analystes financiers, les firmes et les syndicats. On exploite donc la structure de panel des données pour tester l'hétérogénéité dans les attentes d'inflation et déduire leur perception de la politique monétaire. Les résultats montrent qu'il y a évidence d'hétérogénéité dans la manière dont les différents groupes forment leurs attentes. Les attentes des analystes financiers sont arrimées à la bande d'inflation cible alors que celles des firmes et des syndicats ne sont pas arrimées. En effet, les firmes et les syndicats accordent un poids significatif à l'inflation retardée d'une période et leurs prédictions varient avec l'inflation réalisée (retardée). Ce qui dénote un manque de crédibilité parfaite de la banque centrale au vu de ces agents.