20 resultados para Marine insurance
Resumo:
Les suspensivores ont la tâche importante de séparer les particules de l'eau. Bien qu'une grande gamme de morphologies existe pour les structures d'alimentation, elles sont pratiquement toutes constituées de rangées de cylindres qui interagissent avec leur environnement fluide. Le mécanisme de capture des particules utilisé dépend des contraintes morphologiques, des besoins énergétiques et des conditions d'écoulement. Comme nos objectifs étaient de comprendre ces relations, nous avons eu recours à des études de comparaison pour interpréter les tendances en nature et pour comprendre les conditions qui provoquent de nouveaux fonctionnements. Nous avons utilisé la dynamique des fluides numérique (computational fluid dynamics, CFD) pour créer des expériences contrôlées et pour simplifier les analyses. Notre première étude démontre que les coûts énergétiques associés au pompage dans les espaces petits sont élevés. De plus, le CFD suggère que les fentes branchiales des ptérobranches sont des structures rudimentaires, d'un ancêtre plus grande. Ce dernier point confirme l'hypothèse qu'un ver se nourrit par filtration tel que l'ancêtre des deuterostomes. Notre deuxième étude détermine la gamme du nombre de Reynolds number critique où la performance d'un filtre de balane change. Quand le Re est très bas, les différences morphologiques n'ont pas un grand effet sur le fonctionnement. Cependant, une pagaie devient une passoire lorsque le Re se trouve entre 1 et 3,5. Le CFD s’est dévoilé être un outil très utile qui a permis d’obtenir des détails sur les microfluides. Ces études montrent comment la morphologie et les dynamiques des fluides interagissent avec la mécanisme de capture ou de structures utilisées, ainsi que comment des petits changements de taille, de forme, ou de vitesse d'écoulement peuvent conduire à un nouveau fonctionnement.
Resumo:
Dans cette thèse, nous étudions quelques problèmes fondamentaux en mathématiques financières et actuarielles, ainsi que leurs applications. Cette thèse est constituée de trois contributions portant principalement sur la théorie de la mesure de risques, le problème de l’allocation du capital et la théorie des fluctuations. Dans le chapitre 2, nous construisons de nouvelles mesures de risque cohérentes et étudions l’allocation de capital dans le cadre de la théorie des risques collectifs. Pour ce faire, nous introduisons la famille des "mesures de risque entropique cumulatifs" (Cumulative Entropic Risk Measures). Le chapitre 3 étudie le problème du portefeuille optimal pour le Entropic Value at Risk dans le cas où les rendements sont modélisés par un processus de diffusion à sauts (Jump-Diffusion). Dans le chapitre 4, nous généralisons la notion de "statistiques naturelles de risque" (natural risk statistics) au cadre multivarié. Cette extension non-triviale produit des mesures de risque multivariées construites à partir des données financiéres et de données d’assurance. Le chapitre 5 introduit les concepts de "drawdown" et de la "vitesse d’épuisement" (speed of depletion) dans la théorie de la ruine. Nous étudions ces concepts pour des modeles de risque décrits par une famille de processus de Lévy spectrallement négatifs.
Resumo:
Empirical evidence suggests that ambiguity is prevalent in insurance pricing and underwriting, and that often insurers tend to exhibit more ambiguity than the insured individuals (e.g., [23]). Motivated by these findings, we consider a problem of demand for insurance indemnity schedules, where the insurer has ambiguous beliefs about the realizations of the insurable loss, whereas the insured is an expected-utility maximizer. We show that if the ambiguous beliefs of the insurer satisfy a property of compatibility with the non-ambiguous beliefs of the insured, then there exist optimal monotonic indemnity schedules. By virtue of monotonicity, no ex-post moral hazard issues arise at our solutions (e.g., [25]). In addition, in the case where the insurer is either ambiguity-seeking or ambiguity-averse, we show that the problem of determining the optimal indemnity schedule reduces to that of solving an auxiliary problem that is simpler than the original one in that it does not involve ambiguity. Finally, under additional assumptions, we give an explicit characterization of the optimal indemnity schedule for the insured, and we show how our results naturally extend the classical result of Arrow [5] on the optimality of the deductible indemnity schedule.
Resumo:
En 1683, la monarchie française expédie en Nouvelle-France trois compagnies d’infanterie de la Marine afin de mettre un terme à la guerre contre les Iroquois qui menace la colonie sous juridiction de la Marine. Ce premier contingent se montrant incapable de mater l’ennemi, le roi envoie d’autres compagnies dirigées par des officiers qui détiennent soit une expérience dans le service de la Marine ou dans les régiments d’infanterie. La guerre dorénavant ouverte avec les colonies britanniques, force l’enracinement de ce corps d’armée au Canada. Les administrateurs vont l’appeler troupes de la Marine. Un autre facteur d’enracinement est la permission que les autorités royales accordent aux nobles de la colonie canadienne de s’engager dans le corps d’officiers. Les Canadiens y deviennent majoritaires quelques décennies plus tard. Plusieurs de ces officiers, notamment nés en colonie ont fait l’objet de biographies. Quelques études se sont penchées sur le corps d’officiers en tant qu’acteur social. Cependant, l’ensemble de la carrière militaire d’un officier des troupes de la Marine en Nouvelle-France n’a jamais été abordé. Les capitaines, étant parvenus au sommet de la hiérarchie des troupes de la Marine avant 1739, constituent le sujet de cette recherche. Ce sera donc les grandes étapes de leur expérience militaire coloniale que l’on tentera d’approfondir tout en prenant en considération le lieu de naissance de l’officier, ce qui nous permet dégager certaines tendances relatives à la carrière d’officiers militaires dans la société d’Ancien Régime.
Resumo:
Empirical evidence suggests that ambiguity is prevalent in insurance pricing and underwriting, and that often insurers tend to exhibit more ambiguity than the insured individuals (e.g., [23]). Motivated by these findings, we consider a problem of demand for insurance indemnity schedules, where the insurer has ambiguous beliefs about the realizations of the insurable loss, whereas the insured is an expected-utility maximizer. We show that if the ambiguous beliefs of the insurer satisfy a property of compatibility with the non-ambiguous beliefs of the insured, then there exist optimal monotonic indemnity schedules. By virtue of monotonicity, no ex-post moral hazard issues arise at our solutions (e.g., [25]). In addition, in the case where the insurer is either ambiguity-seeking or ambiguity-averse, we show that the problem of determining the optimal indemnity schedule reduces to that of solving an auxiliary problem that is simpler than the original one in that it does not involve ambiguity. Finally, under additional assumptions, we give an explicit characterization of the optimal indemnity schedule for the insured, and we show how our results naturally extend the classical result of Arrow [5] on the optimality of the deductible indemnity schedule.