17 resultados para Free radical polymerization
Resumo:
Beaucoup d'efforts dans le domaine des matériaux polymères sont déployés pour développer de nouveaux matériaux fonctionnels pour des applications spécifiques, souvent très sophistiquées, en employant des méthodes simplifiées de synthèse et de préparation. Cette thèse porte sur les polymères photosensibles – i.e. des matériaux fonctionnels qui répondent de diverses manières à la lumière – qui sont préparés à l'aide de la chimie supramoléculaire – i.e. une méthode de préparation qui repose sur l'auto-assemblage spontané de motifs moléculaires plus simples via des interactions non covalentes pour former le matériau final désiré. Deux types de matériaux photosensibles ont été ciblés, à savoir les élastomères thermoplastiques à base de copolymères à blocs (TPE) et les complexes d'homopolymères photosensibles. Les TPEs sont des matériaux bien connus, et même commercialisés, qui sont généralement composés d’un copolymère tribloc, avec un bloc central très flexible et des blocs terminaux rigides qui présentent une séparation de phase menant à des domaines durs isolés, composés des blocs terminaux rigides, dans une matrice molle formée du bloc central flexible, et ils ont l'avantage d'être recyclable. Pour la première fois, au meilleur de notre connaissance, nous avons préparé ces matériaux avec des propriétés photosensibles, basé sur la complexation supramoléculaire entre un copolymère tribloc simple parent et une petite molécule possédant une fonctionnalité photosensible via un groupe azobenzène. Plus précisément, il s’agit de la complexation ionique entre la forme quaternisée d'un copolymère à blocs, le poly(méthacrylate de diméthylaminoéthyle)-poly(acrylate de n-butyle)-poly(méthacrylate de diméthylaminoéthyle) (PDM-PnBA-PDM), synthétisé par polymérisation radicalaire par transfert d’atomes (ATRP), et l'orange de méthyle (MO), un composé azo disponible commercialement comportant un groupement SO3 -. Le PnBA possède une température de transition vitreuse en dessous de la température ambiante (-46 °C) et les blocs terminaux de PDM complexés avec le MO ont une température de transition vitreuse élevée (140-180 °C, en fonction de la masse molaire). Des tests simples d'élasticité montrent que les copolymères à blocs complexés avec des fractions massiques allant de 20 à 30% présentent un caractère élastomère. Des mesures d’AFM et de TEM (microscopie à force atomique et électronique à ii transmission) de films préparés à l’aide de la méthode de la tournette, montrent une corrélation entre le caractère élastomère et les morphologies où les blocs rigides forment une phase minoritaire dispersée (domaines sphériques ou cylindriques courts). Une phase dure continue (morphologie inversée) est observée pour une fraction massique en blocs rigides d'environ 37%, ce qui est beaucoup plus faible que celle observée pour les copolymères à blocs neutres, dû aux interactions ioniques. La réversibilité de la photoisomérisation a été démontrée pour ces matériaux, à la fois en solution et sous forme de film. La synthèse du copolymère à blocs PDM-PnBA-PDM a ensuite été optimisée en utilisant la technique d'échange d'halogène en ATRP, ainsi qu’en apportant d'autres modifications à la recette de polymérisation. Des produits monodisperses ont été obtenus à la fois pour la macroamorceur et le copolymère à blocs. À partir d'un seul copolymère à blocs parent, une série de copolymères à blocs partiellement/complètement quaternisés et complexés ont été préparés. Des tests préliminaires de traction sur les copolymères à blocs complexés avec le MO ont montré que leur élasticité est corrélée avec la fraction massique du bloc dur, qui peut être ajustée par le degré de quaternisation et de complexation. Finalement, une série de complexes d'homopolymères auto-assemblés à partir du PDM et de trois dérivés azobenzènes portant des groupes (OH, COOH et SO3) capables d'interactions directionnelles avec le groupement amino du PDM ont été préparés, où les dérivés azo sont associés avec le PDM, respectivement, via des interactions hydrogène, des liaisons ioniques combinées à une liaison hydrogène à travers un transfert de proton (acidebase), et des interactions purement ioniques. L'influence de la teneur en azo et du type de liaison sur la facilité d’inscription des réseaux de diffraction (SRG) a été étudiée. L’efficacité de diffraction des SRGs et la profondeur des réseaux inscrits à partir de films préparés à la méthode de la tournette montrent que la liaison ionique et une teneur élevée en azo conduit à une formation plus efficace des SRGs.
Resumo:
Des ligands diketimines porteurs de substituants N-benzyl, N-9-anthrylmethyl et N-mesitylmethyl (nacnacBnH, nacnacAnH, and nacnacMesH) ont été synthétisés par condensation d’une amine et d’acétyl acétone ou son monoacétal d’éthylène glycol. La chlorination de la position 3 a été effectuée à l’aide de N-chlorosuccinimide conduisant à la formation des ligands ClnacnacBnH et ClnacnacAnH. Cette même position 3 a également été substituée par un groupement succinimide par lithiation du nacnacBnH, suivi de la réaction avec le N-chlorosuccinimide (3-succinimido-nacnacBnH). Les ligands N-aryl nacnacippH et nacnacNaphH (ipp = 2-isopropylphenyl, Naph = 1-naphthyl) ont été préparés selon les procédures reportées dans la littérature. La réaction de ces ligands avec Zn(TMSA)2 (TMSA = N(SiMe3)2) conduit à la formation des complexes nacnacAnZn(TMSA) et ClnacnacBnZn(TMSA). La protonation avec l’isopropanol permet l’obtention des complexes nacnacAnZnOiPr et ClnacnacBnZnOiPr. La réaction avec Mg(TMSA)2 permet quant à elle la formation des complexes nacnacAnMg(TMSA), nacnacMesMg(TMSA), ClnacnacBnMg(TMSA) et ClnacnacAnMg(TMSA). La protonation subséquente à l’aide du tert-butanol permet l’obtention du nacnacMesMgOtBu et du ClnacnacBnMgOtBu, alors que l’on observe uniquement une décomposition avec les ligands possédant des substituants N-anthrylmethyl. La réaction de ces diketimines avec Cu(OiPr)2 conduit aux dimères hétéroleptiques [nacnacBnCu(μ-OiPr)]2 et [3-Cl-nacnacBnCu(μ-OiPr)]2 lors de l’usage des ligands stériquement peu encombrés. Lors de l’utilisation de ligands plus encombrés, la stabilisation du complexe hétéroleptique par dimérisation n’est plus possible, conduisant, par un échange de ligand, à la formation des complexes homoleptiques Cu(nacnacipp)2 et Cu(nacnacNaph)2. Les complexes homoleptiques Cu(nacnacBn)2 et Cu(3-succinimido-nacnacBn)2 ont été obtenus à partir des ligands N-benzyl. Les ligands encore plus encombrés tels que nacnacAnH, nacnacMesH ou ceux comportant des substituants N-methylbenzyl ne présentent alors plus de réactivité avec le Cu(OiPr)2. La plupart des complexes ont été caractérisés par Diffraction des Rayons X. Les complexes homoleptiques ainsi que ceux de TMSA sont monomériques, alors que ceux formés à partir d’alkoxides se présentent sous forme de dimères à l’état solide. Tous les complexes d’alkoxides ainsi que les nacnacAnMg(TMSA)/BnOH et ClnacnacAnMg(TMSA)/BnOH présentent une réactivité modérée à haute en matière de polymérisation du rac-lactide (90% de conversion en 30 secondes à 3 heures). Le nacnacAnZnOiPr permet la synthèse d’un polymère hautement hétérotactique (Pr = 0.90) quand le ClnacnacBnMgOtBu/BnOH génère un polymère isotactique à -30°C (Pr = 0.43). Tous les autres catalyseurs produisent des polymères atactiques avec une légère tendance hétérotactique (Pr = 0.48 – 0.55). Les complexes hétéroleptiques [nacnacBnCu(μ-OiPr)]2 et [3-Cl-nacnacBnCu(μ-OiPr)]2 se révèlent être de très bons catalyseurs pour la polymérisation du rac-lactide présentant une conversion complète du monomère à température ambiante, en solution, en 0,5 à 5 minutes. Le [nacnacBnCu(μ-OiPr)]2 est actif en présence ou absence d’isopropanol, agissant comme agent de transfert de chaine à haute activité (k2 = 32 M–1•s–1) dans le dichlorométhane. Dans l’acétonitrile, le THF, le dichloromethane et le toluène, [nacnacBnCu(μ-OiPr)]2 conduit à une étroite polydispersité, possédant respectivement des kobs = 2.4(1), 5.3(5), 3.6-4.4 and 10(1) min–1. Aucune réaction parasite, telle qu’une trans-esterification, une épimerisation ou une décomposition du catalyseur, n’a été observée. Les complexes homoleptiques en présence d’alcool libre semblent présenter un équilibre avec une petite quantité de leurs équivalents hétéroleptiques, permettant une polymérisation complète, en moins de 60 min, à température ambiante. Tous les catalyseurs de cuivre présentent un haut contrôle de la polymérisation avec une polydispersité égale ou inférieure à 1.1. Les polymères obtenus sont essentiellement atactiques, avec une légère tendance à l’hétérotacticité à température ambiante et -17°C. Le [nacnacBnCu(μ-OiPr)]2 polymérise également la -butyrolactone (BL), l’-caprolactone (CL) et la -valerolactone (VL) avec des constantes respectivement égales à kobs = 3.0(1)•10–2, 1.2–2.7•10–2, et 0.11(1) min–1. Les homopolymères présentent une étroite polydispersité d’approximativement 1.1. Les polymérisations par addition séquentielle ont mis en évidence une trans-estérification (non observée dans les homopolymérisations) si BL ou CL sont introduits après un bloc lactide.