18 resultados para FPGA Memory
Resumo:
Semantic deficits have been documented in the prodromal phase of Alzheimer’s disease, but it is unclear whether these deficits are associated with non-cognitive manifestations. For instance, recent evidence indicates that cognitive deficits in elders with amnestic mild cognitive impairment (aMCI) are modulated by concomitant depressive symptoms. The purposes of this study were to (i) investigate if semantic memory impairment in aMCI is modulated according to the presence (aMCI-D group) or absence (aMCI group) of depressive symptoms, and (ii) compare semantic memory performance of aMCI and aMCI-D groups to that of patients with late-life depression (LLD). Seventeen aMCI, 16 aMCI-D, 15 LLD, and 26 healthy control participants were administered a semantic questionnaire assessing famous person knowledge. Results showed that performance of aMCI-D patients was impaired compared to the control and LLD groups. However, in the aMCI group performance was comparable to that of all other groups. Overall, these findings suggest that semantic deficits in aMCI are somewhat associated with the presence of concomitant depressive symptoms. However, depression alone cannot account solely for the semantic deficits since LLD patients showed no semantic memory impairment in this study. Future studies should aim at clarifying the association between depression and semantic deficits in older adults meeting aMCI criteria.
Resumo:
Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.
Resumo:
The goal of this study was to investigate the specific patterns of memory breakdown in patients suffering from early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD). Twenty EOAD patients, twenty LOAD patients, twenty matched younger controls, and twenty matched older controls participated in this study. All participants underwent a detailed neuropsychological assessment, an MRI scan, an FDG-PET scan, and AD patients had biomarkers as supporting evidence of both amyloïdopathy and neuronal injury. Results of the neuropsychological assessment showed that both EOAD and LOAD groups were impaired in the domains of memory, executive functions, language, praxis, and visuoconstructional abilities, when compared to their respective control groups. EOAD and LOAD groups, however, showed distinct patterns of memory impairment. Even though both groups were similarly affected on measures of episodic, short term and working memory, in contrast semantic memory was significantly more impaired in LOAD than in EOAD patients. The EOAD group was not more affected than the LOAD group in any memory domain. EOAD patients, however, showed significantly poorer performance in other cognitive domains including executive functions and visuoconstructional abilities. A more detailed analysis of the pattern of semantic memory performance among patient groups revealed that the LOAD was more profoundly impaired, in tasks of both spontaneous recall and semantic recognition. Voxel-Based Morphometry (VBM) analyses showed that impaired semantic performance in patients was associated with reduced gray matter volume in the anterior temporal lobe region, while PET-FDG analyses revealed that poorer semantic performance was associated with greater hypometabolism in the left temporoparietal region, both areas reflecting key regions of the semantic network. Results of this study indicate that EOAD and LOAD patients present with distinct patterns of memory impairment, and that a genuine semantic impairment may represent one of the clinical hallmarks of LOAD.