26 resultados para FINITE-GROUPS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce travail, nous exploitons des propriétés déjà connues pour les systèmes de poids des représentations afin de les définir pour les orbites des groupes de Weyl des algèbres de Lie simples, traitées individuellement, et nous étendons certaines de ces propriétés aux orbites des groupes de Coxeter non cristallographiques. D'abord, nous considérons les points d'une orbite d'un groupe de Coxeter fini G comme les sommets d'un polytope (G-polytope) centré à l'origine d'un espace euclidien réel à n dimensions. Nous introduisons les produits et les puissances symétrisées de G-polytopes et nous en décrivons la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algèbres de Lie simples de tous types sont réduites en l'union d'orbites des groupes de Weyl des sous-algèbres réductives maximales de l'algèbre. Nous listons les matrices qui transforment les points des orbites de l'algèbre en des points des orbites des sous-algèbres pour tous les cas n<=8 ainsi que pour plusieurs séries infinies des paires d'algèbre-sous-algèbre. De nombreux exemples de règles de branchement sont présentés. Finalement, nous fournissons une nouvelle description, uniforme et complète, des centralisateurs des sous-groupes réguliers maximaux des groupes de Lie simples de tous types et de tous rangs. Nous présentons des formules explicites pour l'action de tels centralisateurs sur les représentations irréductibles des algèbres de Lie simples et montrons qu'elles peuvent être utilisées dans le calcul des règles de branchement impliquant ces sous-algèbres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans certaines circonstances, des actions de groupes sont plus performantes que des actions individuelles. Dans ces situations, il est préférable de former des coalitions. Ces coalitions peuvent être disjointes ou imbriquées. La littérature économique met un fort accent sur la modélisation des accords où les coalitions d’agents économiques sont des ensembles disjoints. Cependant on observe dans la vie de tous les jours que les coalitions politiques, environnementales, de libre-échange et d’assurance informelles sont la plupart du temps imbriquées. Aussi, devient-il impératif de comprendre le fonctionnement économique des coalitions imbriquées. Ma thèse développe un cadre d’analyse qui permet de comprendre la formation et la performance des coalitions même si elles sont imbriquées. Dans le premier chapitre je développe un jeu de négociation qui permet la formation de coalitions imbriquées. Je montre que ce jeu admet un équilibre et je développe un algorithme pour calculer les allocations d’équilibre pour les jeux symétriques. Je montre que toute structure de réseau peut se décomposer de manière unique en une structure de coalitions imbriquées. Sous certaines conditions, je montre que cette structure correspond à une structure d’équilibre d’un jeu sous-jacent. Dans le deuxième chapitre j’introduis une nouvelle notion de noyau dans le cas où les coalitions imbriquées sont permises. Je montre que cette notion de noyau est une généralisation naturelle de la notion de noyau de structure de coalitions. Je vais plus loin en introduisant des agents plus raffinés. J’obtiens alors le noyau de structure de coalitions imbriquées que je montre être un affinement de la première notion. Dans la suite de la thèse, j’applique les théories développées dans les deux premiers chapitres à des cas concrets. Le troisième chapitre est une application de la relation biunivoque établie dans le premier chapitre entre la formation des coalitions et la formation de réseaux. Je propose une modélisation réaliste et effective des assurances informelles. J’introduis ainsi dans la littérature économique sur les assurances informelles, quatre innovations majeures : une fusion entre l’approche par les groupes et l’approche par les réseaux sociaux, la possibilité d’avoir des organisations imbriquées d’assurance informelle, un schéma de punition endogène et enfin les externalités. Je caractérise les accords d’assurances informelles stables et j’isole les conditions qui poussent les agents à dévier. Il est admis dans la littérature que seuls les individus ayant un revenu élevé peuvent se permettre de violer les accords d’assurances informelles. Je donne ici les conditions dans lesquelles cette hypothèse tient. Cependant, je montre aussi qu’il est possible de violer cette hypothèse sous d’autres conditions réalistes. Finalement je dérive des résultats de statiques comparées sous deux normes de partage différents. Dans le quatrième et dernier chapitre, je propose un modèle d’assurance informelle où les groupes homogènes sont construits sur la base de relations de confiance préexistantes. Ces groupes sont imbriqués et représentent des ensembles de partage de risque. Cette approche est plus générale que les approches traditionnelles de groupe ou de réseau. Je caractérise les accords stables sans faire d’hypothèses sur le taux d’escompte. J’identifie les caractéristiques des réseaux stables qui correspondent aux taux d’escomptes les plus faibles. Bien que l’objectif des assurances informelles soit de lisser la consommation, je montre que des effets externes liés notamment à la valorisation des liens interpersonnels renforcent la stabilité. Je développe un algorithme à pas finis qui égalise la consommation pour tous les individus liés. Le fait que le nombre de pas soit fini (contrairement aux algorithmes à pas infinis existants) fait que mon algorithme peut inspirer de manière réaliste des politiques économiques. Enfin, je donne des résultats de statique comparée pour certaines valeurs exogènes du modèle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire étudie l'algorithme d'amplification de l'amplitude et ses applications dans le domaine de test de propriété. On utilise l'amplification de l'amplitude pour proposer le plus efficace algorithme quantique à ce jour qui teste la linéarité de fonctions booléennes et on généralise notre nouvel algorithme pour tester si une fonction entre deux groupes abéliens finis est un homomorphisme. Le meilleur algorithme quantique connu qui teste la symétrie de fonctions booléennes est aussi amélioré et l'on utilise ce nouvel algorithme pour tester la quasi-symétrie de fonctions booléennes. Par la suite, on approfondit l'étude du nombre de requêtes à la boîte noire que fait l'algorithme d'amplification de l'amplitude pour amplitude initiale inconnue. Une description rigoureuse de la variable aléatoire représentant ce nombre est présentée, suivie du résultat précédemment connue de la borne supérieure sur l'espérance. Suivent de nouveaux résultats sur la variance de cette variable. Il est notamment montré que, dans le cas général, la variance est infinie, mais nous montrons aussi que, pour un choix approprié de paramètres, elle devient bornée supérieurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <>, pour des fonctions de plusieurs variables, en liaison avec les fonctions $C$, $S^s$ et $S^l$. On fournit également une description complète des transformées en cosinus discrètes de types V--VIII à $n$ dimensions en employant les fonctions spéciales associées aux algèbres de Lie simples $B_n$ et $C_n$, appelées cosinus antisymétriques et symétriques. Enfin, on étudie quatre familles de polynômes orthogonaux à plusieurs variables, analogues aux polynômes de Tchebyshev, introduits en utilisant les cosinus (anti)symétriques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire examine la question de la formation de l'identité en tant que procédure compliquée dans laquelle plusieurs éléments interviennent. L'identité d'une personne se compose à la fois d’une identité propre et d’une autre collective. Dans le cas où l’identité propre est jugée sévèrement par les autres comme étant déviante, cela poussera la personne à, ou bien maintenir une image compatible avec les prototypes sociaux ou bien résister et affirmer son identité personnelle. Mon travail montre que l'exclusion et la répression de certains aspects de l'identité peuvent causer un disfonctionnement psychique difficile à surmonter. Par contre, l'acceptation de soi et l’adoption de tous les éléments qui la constituent conduisent, certes après une longue lutte, au salut de l’âme et du corps. Le premier chapitre propose une approche psychosociale qui vise à expliquer le fonctionnement des groupes et comment l'interaction avec autrui joue un rôle décisif dans la formation de l'identité. Des éléments extérieurs comme par exemple les idéaux sociaux influencent les comportements et les choix des gens. Toutefois, cette influence peut devenir une menace aux spécificités personnelles et aux traits spécifiques. Le deuxième chapitre examine la question des problèmes qu’on risque d’avoir au cas où les traits identitaires franchiraient les normes sociales. Nous partons du problème épineux de la quête de soi dans Giovanni's Room de James Baldwin. L'homosexualité de David était tellement refusée par la société qu’elle a engendrée chez lui des sentiments de honte et de culpabilité. Il devait choisir entre le sacrifice des aspects de soi pour satisfaire les paradigmes sociaux ou bien perdre ce qu’il a de propre. David n'arrive pas à se libérer. Il reste prisonnier des perceptions rigides au sujet de la masculinité et de la sexualité. Mon analyse se focalise essentiellement sur l'examen des différents éléments théoriques qui touchent la question du sexe et de la sexualité. Le résultat est le suivant : plus les opinions dominantes sont rigides et fermes, plus elles deviennent une prison pour l’individu. Par contre, plus elles sont tolérantes et flexibles, plus elles acceptent les diversités de l'identité humaine. Dans le dernier chapitre, j'examine la question de la représentation des relations entre les caractères masculins dans Just Above My Head. L'homosexualité est présentée comme un moyen sacré pour exprimer l'amour. Les caractères révèlent leurs sentiments implicitement à travers les chants spirituel tel que le gospel ou bien explicitement à travers la connexion physique. Dans ce roman, Baldwin montre que c'est seulement grâce à la sincérité et à l'amour que l'individu peut atteindre la libération du soi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.