20 resultados para FEEBLY COMPACT REGULAR SPACE
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.
Resumo:
Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz.
Resumo:
Full Text / Article complet
Resumo:
La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.