19 resultados para Excitability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le risque de chute est une problématique bien présente chez les personnes âgées ou ayant une atteinte neurologique et reflète un déficit des mécanismes neuronaux assurant l’équilibre. De précédentes études démontrent que l’intégration des informations sensorielles est essentielle au contrôle de l’équilibre et que l’inhibition présynaptique (IP) serait un mécanisme important dans le contrôle de la transmission sensorielle. Ainsi, le but de cette étude était d’identifier la contribution du mécanisme d’IP à l’induction de réponses posturales efficaces suite à une perturbation d’équilibre. Notre hypothèse est qu’une diminution d’IP contribuerait à l’induction des ces réponses, en augmentant l’influence de la rétroaction sensorielle sur les réseaux de neurones spinaux. Afin de démontrer cette hypothèse, nous avons d’abord évalué l’excitabilité spinale pendant les perturbations vers l’avant ou vers l’arrière, à l’aide du réflexe H. L’excitabilité spinale était modulée selon la direction de la perturbation et cette modulation survenait dès 75 ou 100 ms (p<0.05), soit avant l’induction des réactions posturales. Puis, à l’aide de techniques plus précises de convergence spinale, nous avons démontré que l’IP était diminuée dès 75 et 100 ms dans les deux directions, suggérant que la transmission des informations sensorielles vers la moelle épinière est accrue juste avant le déclenchement de la réponse posturale. Cette étude met en évidence un mécanisme-clé permettant d’augmenter la rétroaction des informations sensorielles nécessaires à l’induction de réponses posturales appropriées. L’évaluation de ce mécanisme pourrait mener à une meilleure identification des individus à risque de chute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Après un accident vasculaire cérébral (AVC), 30% des personnes ont une atteinte de la fonction motrice du membre supérieur. Un des mécanismes pouvant intervenir dans la récupération motrice après un AVC est la réorganisation des interactions interhémisphériques. À ce jour, la plupart des études se sont intéressées aux interactions entre les représentations des muscles de la main. Or la réalisation de mouvements de la main nécessite une coordination précise des muscles proximaux de l’épaule et le maintien d’une stabilité assurée par les muscles du tronc. Cependant, il existe peu d’informations sur le contrôle interhémisphérique de ces muscles. Ainsi, l’objectif de cette étude était de caractériser les interactions entre les représentations corticales des muscles proximaux (Deltoïde antérieur (DA)), et axiaux (Erecteur spinal (ES L1)) chez le sujet sain et de les comparer avec les interactions interhémisphériques entre les représentations des muscles distaux (1er interosseux dorsal (FDI)). Deux techniques de stimulation magnétique transcrânienne ont été utilisées pour évaluer ces interactions. La stimulation du cortex moteur ipsilatéral évoque une période de silence ipsilatérale (iSP)-reflétant l’inhibition interhémiphérique-dans le FDI et le DA. Dans ES L1, l’iSP est précédée d’une facilitation. Le paradigme de l’impulsion pairée démontre aussi la présence d’inhibition interhémisphérique dans les trois muscles. Ces résultats suggèrent un patron distinct d’interactions réciproques entre les représentations des muscles distaux, proximaux et axiaux qui peut être expliqué à la fois par des changements d’excitabilité au niveau cortical et sous-cortical. Ces résultats pourraient servir de bases normatives afin d’évaluer les changements survenant suite à un AVC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La stimulation électrique transcrânienne à courant direct (tDCS) est une technique non invasive de neuromodulation qui modifie l’excitabilité corticale via deux grosses électrodes de surface. Les effets dépendent de la polarité du courant, anodique = augmentation de l’excitabilité corticale et cathodique = diminution. Chez l’humain, il n’existe pas de consensus sur des effets de la tDCS appliquée au cortex somatosensoriel primaire (S1) sur la perception somesthésique. Nous avons étudié la perception vibrotactile (20 Hz, amplitudes variées) sur le majeur avant, pendant et après la tDCS appliquée au S1 controlatéral (anodale, a; cathodale, c; sham, s). Notre hypothèse « shift-gain » a prédit une diminution des seuils de détection et de discrimination pour la tDCS-a (déplacement vers la gauche de la courbe stimulus-réponse et une augmentation de sa pente). On attendait les effets opposés avec la tDCS-c, soit une augmentation des seuils (déplacement à droite et diminution de la pente). Chez la majorité des participants, des diminutions des seuils ont été observées pendant et immédiatement suivant la tDCS-a (1 mA, 20 min) en comparaison à la stimulation sham. Les effets n’étaient plus présents 30 min plus tard. Une diminution du seuil de discrimination a également été observée pendant, mais non après la tDCS-c (aucun effet pour détection). Nos résultats supportent notre hypothèse, uniquement pour la tDCS-a. Une suite logique serait d’étudier si des séances répétées de tDCS-a mènent à des améliorations durables sur la perception tactile. Ceci serait bénéfique pour la réadaptation sensorielle (ex. suite à un accident vasculaire cérébral).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.