16 resultados para Error Correction Models
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (51)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (178)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (73)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (14)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (36)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (10)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (5)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Gulbenkian de Ciência (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (3)
- Publishing Network for Geoscientific & Environmental Data (27)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (11)
- Repositório digital da Fundação Getúlio Vargas - FGV (20)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (47)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (6)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (6)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (5)
- Universidade do Minho (3)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (21)
- Université de Montréal, Canada (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (6)
- University of Michigan (2)
- University of Queensland eSpace - Australia (162)
- University of Washington (1)
- WestminsterResearch - UK (1)
Inference for nonparametric high-frequency estimators with an application to time variation in betas
Resumo:
We consider the problem of conducting inference on nonparametric high-frequency estimators without knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal under general conditions that were not previously available in the literature. We suggest a procedure for a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling method is much more robust than the plug-in method based on the asymptotic expression for the variance. Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plugin estimator substantially underestimates the sampling uncertainty. By construction, the subsampling method delivers estimates of the variance-covariance matrices that are always positive semi-definite. We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We document significant variation in betas within year 2006, and find that tick data captures more variation in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture this variation we estimate a simple dynamic model for betas. The variance estimation is also important for the correction of the errors-in-variables bias in such models. We find that the bias corrections are substantial, and that betas are more persistent than the naive estimators would lead one to believe.