18 resultados para EVALUATION PROCESS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Bien que l'importance de transférer les données de la recherche à la pratique a été largement démontrée, ce processus est toujours lent et fait face à plusieurs défis tels que la conceptualisation des évidences, la validité interne et externe de la recherche scientifique et les coûts élevés de la collecte de grandes quantités de données axées sur le patient. Les dossiers dentaires des patients contiennent des renseignements valables qui donneraient aux chercheurs cliniques une opportunité d'utiliser un large éventail d'informations quantitatives ou qualitatives. La standardisation du dossier clinique permettrait d’échanger et de réutiliser des données dans différents domaines de recherche. Objectifs: Le but de cette étude était de concevoir un dossier patient axé sur la recherche dans le domaine de la prosthodontie amovible à la clinique de premier cycle de l’Université de Montréal. Méthodes: Cette étude a utilisé des méthodes de recherche-action avec 4 étapes séquentielles : l'identification des problèmes, la collecte et l'interprétation des données, la planification et l’évaluation de l'action. Les participants de l'étude (n=14) incluaient des professeurs, des chercheurs cliniques et des instructeurs cliniques dans le domaine de la prosthodontie amovible. La collecte des données a été menée à l’aide d’une revue de littérature ciblée et complète sur les résultats en prosthodontie ainsi que par le biais de discussions de groupes et d’entrevues. Les données qualitatives ont été analysées en utilisant QDA Miner 3.2.3. Résultats: Les participants de l'étude ont soulevé plusieurs points absents au formulaire actuel de prosthodontie à la clinique de premier cycle. Ils ont partagé leurs idées pour la conception d'un nouveau dossier-patient basé sur 3 objectifs principaux: les objectifs cliniques, éducatifs et de recherche. Les principaux sujets d’intérêt en prosthodontie amovibles, les instruments appropriés ainsi que les paramètres cliniques ont été sélectionnés par le groupe de recherche. Ces résultats ont été intégrés dans un nouveau formulaire basé sur cette consultation. La pertinence du nouveau formulaire a été évaluée par le même groupe d'experts et les modifications requises ont été effectuées. Les participants de l'étude ont convenu que le cycle de recherche-action doit être poursuivi afin d'évaluer la faisabilité d’implémentation de ce dossier modifié dans un cadre universitaire. Conclusion: Cette étude est une première étape pour développer une base de données dans le domaine de la prothodontie amovible. La recherche-action est une méthode de recherche utile dans ce processus, et les éducateurs académiques sont bien placés pour mener ce type de recherche.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans cette thèse, je me suis interessé à l’identification partielle des effets de traitements dans différents modèles de choix discrets avec traitements endogènes. Les modèles d’effets de traitement ont pour but de mesurer l’impact de certaines interventions sur certaines variables d’intérêt. Le type de traitement et la variable d’intérêt peuvent être défini de manière générale afin de pouvoir être appliqué à plusieurs différents contextes. Il y a plusieurs exemples de traitement en économie du travail, de la santé, de l’éducation, ou en organisation industrielle telle que les programmes de formation à l’emploi, les techniques médicales, l’investissement en recherche et développement, ou l’appartenance à un syndicat. La décision d’être traité ou pas n’est généralement pas aléatoire mais est basée sur des choix et des préférences individuelles. Dans un tel contexte, mesurer l’effet du traitement devient problématique car il faut tenir compte du biais de sélection. Plusieurs versions paramétriques de ces modèles ont été largement étudiées dans la littérature, cependant dans les modèles à variation discrète, la paramétrisation est une source importante d’identification. Dans un tel contexte, il est donc difficile de savoir si les résultats empiriques obtenus sont guidés par les données ou par la paramétrisation imposée au modèle. Etant donné, que les formes paramétriques proposées pour ces types de modèles n’ont généralement pas de fondement économique, je propose dans cette thèse de regarder la version nonparamétrique de ces modèles. Ceci permettra donc de proposer des politiques économiques plus robustes. La principale difficulté dans l’identification nonparamétrique de fonctions structurelles, est le fait que la structure suggérée ne permet pas d’identifier un unique processus générateur des données et ceci peut être du soit à la présence d’équilibres multiples ou soit à des contraintes sur les observables. Dans de telles situations, les méthodes d’identifications traditionnelles deviennent inapplicable d’où le récent développement de la littérature sur l’identification dans les modèles incomplets. Cette littérature porte une attention particuliere à l’identification de l’ensemble des fonctions structurelles d’intérêt qui sont compatibles avec la vraie distribution des données, cet ensemble est appelé : l’ensemble identifié. Par conséquent, dans le premier chapitre de la thèse, je caractérise l’ensemble identifié pour les effets de traitements dans le modèle triangulaire binaire. Dans le second chapitre, je considère le modèle de Roy discret. Je caractérise l’ensemble identifié pour les effets de traitements dans un modèle de choix de secteur lorsque la variable d’intérêt est discrète. Les hypothèses de sélection du secteur comprennent le choix de sélection simple, étendu et généralisé de Roy. Dans le dernier chapitre, je considère un modèle à variable dépendante binaire avec plusieurs dimensions d’hétérogéneité, tels que les jeux d’entrées ou de participation. je caractérise l’ensemble identifié pour les fonctions de profits des firmes dans un jeux avec deux firmes et à information complète. Dans tout les chapitres, l’ensemble identifié des fonctions d’intérêt sont écrites sous formes de bornes et assez simple pour être estimées à partir des méthodes d’inférence existantes.