17 resultados para Density-based Scanning Algorithm
Resumo:
Dans des contextes de post-urgence tels que le vit la partie occidentale de la République Démocratique du Congo (RDC), l’un des défis cruciaux auxquels font face les hôpitaux ruraux est de maintenir un niveau de médicaments essentiels dans la pharmacie. Sans ces médicaments pour traiter les maladies graves, l’impact sur la santé de la population est significatif. Les hôpitaux encourent également des pertes financières dues à la péremption lorsque trop de médicaments sont commandés. De plus, les coûts du transport des médicaments ainsi que du superviseur sont très élevés pour les hôpitaux isolés ; les coûts du transport peuvent à eux seuls dépasser ceux des médicaments. En utilisant la province du Bandundu, RDC pour une étude de cas, notre recherche tente de déterminer la faisabilité (en termes et de la complexité du problème et des économies potentielles) d’un problème de routage synchronisé pour la livraison de médicaments et pour les visites de supervision. Nous proposons une formulation du problème de tournées de véhicules avec capacité limitée qui gère plusieurs exigences nouvelles, soit la synchronisation des activités, la préséance et deux fréquences d’activités. Nous mettons en œuvre une heuristique « cluster first, route second » avec une base de données géospatiales qui permet de résoudre le problème. Nous présentons également un outil Internet qui permet de visualiser les solutions sur des cartes. Les résultats préliminaires de notre étude suggèrent qu’une solution synchronisée pourrait offrir la possibilité aux hôpitaux ruraux d’augmenter l’accessibilité des services médicaux aux populations rurales avec une augmentation modique du coût de transport actuel.
Resumo:
There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.