33 resultados para Classification, Markov chain Monte Carlo, k-nearest neighbours


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicÅur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En radiothérapie, la tomodensitométrie (CT) fournit lâinformation anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. Lâimportation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à lâaide dâune courbe dâétalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant lâétalonnage est susceptible dâassigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels dâimages CT afin dâassurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence dâartefacts est ensuite réalisée par une analyse statistique des histogrammes. à lâorigine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur lâétat de lâart en matière de correction du durcissement de faisceau est présentée suivi dâune démonstration explicite dâune correction empirique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÃDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tâche de maintenance ainsi que la compréhension des programmes orientés objet (OO) deviennent de plus en plus coûteuses. Lâanalyse des liens de dépendance peut être une solution pour faciliter ces tâches dâingénierie. Cependant, analyser les liens de dépendance est une tâche à la fois importante et difficile. Nous proposons une approche pour l'étude des liens de dépendance internes pour des programmes OO, dans un cadre probabiliste, où les entrées du programme peuvent être modélisées comme un vecteur aléatoire, ou comme une chaîne de Markov. Dans ce cadre, les métriques de couplage deviennent des variables aléatoires dont les distributions de probabilité peuvent être étudiées en utilisant les techniques de simulation Monte-Carlo. Les distributions obtenues constituent un point dâentrée pour comprendre les liens de dépendance internes entre les éléments du programme, ainsi que leur comportement général. Ce travail est valable dans le cas où les valeurs prises par la métrique dépendent des entrées du programme et que ces entrées ne sont pas fixées à priori. Nous illustrons notre approche par deux études de cas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les simulations ont été implémentées avec le programme Java.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les processus Markoviens continus en temps sont largement utilisés pour tenter dâexpliquer lâévolution des séquences protéiques et nucléotidiques le long des phylogénies. Des modèles probabilistes reposant sur de telles hypothèses sont conçus pour satisfaire la non-homogénéité spatiale des contraintes fonctionnelles et environnementales agissant sur celles-ci. Récemment, des modèles Markov-modulés ont été introduits pour décrire les changements temporels dans les taux dâévolution site-spécifiques (hétérotachie). Des études ont dâautre part démontré que non seulement la force mais également la nature de la contrainte sélective agissant sur un site peut varier à travers le temps. Ici nous proposons de prendre en charge cette réalité évolutive avec un modèle Markov-modulé pour les protéines sous lequel les sites sont autorisés à modifier leurs préférences en acides aminés au cours du temps. Lâestimation a posteriori des différents paramètres modulants du noyau stochastique avec les méthodes de Monte Carlo est un défi de taille que nous avons su relever partiellement grâce à la programmation parallèle. Des réglages computationnels sont par ailleurs envisagés pour accélérer la convergence vers lâoptimum global de ce paysage multidimensionnel relativement complexe. Qualitativement, notre modèle semble être capable de saisir des signaux dâhétérogénéité temporelle à partir dâun jeu de données dont lâhistoire évolutive est reconnue pour être riche en changements de régimes substitutionnels. Des tests de performance suggèrent de plus quâil serait mieux ajusté aux données quâun modèle équivalent homogène en temps. Néanmoins, les histoires substitutionnelles tirées de la distribution postérieure sont bruitées et restent difficilement interprétables du point de vue biologique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, câest-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à lâéducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et dâévaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que lâutilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est lâutilisation de tests robustes à lâidentification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il nâexiste aucune littérature économétrique sur la qualité des procédures robustes à lâidentification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures dâinférence robustes à lâidentification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, quâarrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble dâinstruments valides? Ces procédures se comportent-elles différemment? Et si lâendogénéité des variables instrumentales pose des difficultés majeures à lâinférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsquâils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection dâinstruments qui demeurent valides même en présence dâidentification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 â 2661. Dans cet essai, nous analysons les effets de lâendogénéité des instruments sur deux statistiques de test robustes à lâidentification: la statistique dâAnderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. Dâabord, lorsque le paramètre qui contrôle lâendogénéité des instruments est fixe (ne dépend pas de la taille de lâéchantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence dâinstruments invalides (câest-à-dire détectent la présence dâinstruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée dâune manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où lâestimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (câest-à-dire le paramètre dâendogénéité converge vers zéro lorsque la taille de lâéchantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie lâimpact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous lâhypothèse nulle (niveau) et lâalternative (puissance), incluant les cas où lâidentification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour lâexogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests nâont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant quâau moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas dâintérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) lâestimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et lâendogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests dâexogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si lâon a la certitude dâavoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux dâouverture et la croissance économique et le problème bien connu du rendement à lâéducation. Le troisième essai étend le test dâexogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence dâerreurs non-Gaussiens. Contrairement aux procédures de test dâexogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester lâexogénéité partielle dâun sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme dâerreur quadratique moyenne) que lâestimateur IV usuel lorsque les variables instrumentales sont faibles et lâendogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu dâéquation du salaire [Angist et Krueger (1991, 1999)] et les rendements dâéchelle [Nerlove (1963)]. Nos résultats suggèrent que lâéducation de la mère expliquerait le décrochage de son fils, que lâoutput est une variable endogène dans lâestimation du coût de la firme et que le prix du fuel en est un instrument valide pour lâoutput. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. Dâabord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque lâidentification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test nâest en général plus valide. Cet essai développe une procédure dâinférence robuste à lâidentification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à lâhétéroscédasticité et lâautocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests dâexogénéité partielle robustes à lâidentification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même sâil y a un problème dâidentification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent lâestimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme lâestimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que lâestimateur IV usuel lorsque les instruments sont faibles et lâendogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à lâestimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux dâouverture et la croissance économique et le modèle de rendements à lâéducation. Dans la première application, les études antérieures ont conclu que les instruments nâétaient pas trop faibles [Dufour et Taamouti (2007)] alors quâils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'hétérogénéité de réponses dans un groupe de patients soumis à un même régime thérapeutique doit être réduite au cours d'un traitement ou d'un essai clinique. Deux approches sont habituellement utilisées pour atteindre cet objectif. L'une vise essentiellement à construire une observance active. Cette approche se veut interactive et fondée sur l'échange ``médecin-patient '', ``pharmacien-patient'' ou ``vétérinaire-éleveurs''. L'autre plutôt passive et basée sur les caractéristiques du médicament, vise à contrôler en amont cette irrégularité. L'objectif principal de cette thèse était de développer de nouvelles stratégies d'évaluation et de contrôle de l'impact de l'irrégularité de la prise du médicament sur l'issue thérapeutique. Plus spécifiquement, le premier volet de cette recherche consistait à proposer des algorithmes mathématiques permettant d'estimer efficacement l'effet des médicaments dans un contexte de variabilité interindividuelle de profils pharmacocinétiques (PK). Cette nouvelle méthode est fondée sur l'utilisation concommitante de données \textit{in vitro} et \textit{in vivo}. Il s'agit de quantifier l'efficience ( c-à-dire efficacité plus fluctuation de concentrations \textit{in vivo}) de chaque profil PK en incorporant dans les modèles actuels d'estimation de l'efficacité \textit{in vivo}, la fonction qui relie la concentration du médicament de façon \textit{in vitro} à l'effet pharmacodynamique. Comparativement aux approches traditionnelles, cette combinaison de fonction capte de manière explicite la fluctuation des concentrations plasmatiques \textit{in vivo} due à la fonction dynamique de prise médicamenteuse. De plus, elle soulève, à travers quelques exemples, des questions sur la pertinence de l'utilisation des indices statiques traditionnels ($C_{max}$, $AUC$, etc.) d'efficacité comme outil de contrôle de l'antibiorésistance. Le deuxième volet de ce travail de doctorat était d'estimer les meilleurs temps d'échantillonnage sanguin dans une thérapie collective initiée chez les porcs. Pour ce faire, nous avons développé un modèle du comportement alimentaire collectif qui a été par la suite couplé à un modèle classique PK. à l'aide de ce modèle combiné, il a été possible de générer un profil PK typique à chaque stratégie alimentaire particulière. Les données ainsi générées, ont été utilisées pour estimer les temps d'échantillonnage appropriés afin de réduire les incertitudes dues à l'irrégularité de la prise médicamenteuse dans l'estimation des paramètres PK et PD . Parmi les algorithmes proposés à cet effet, la méthode des médianes semble donner des temps d'échantillonnage convenables à la fois pour l'employé et pour les animaux. Enfin, le dernier volet du projet de recherche a consisté à proposer une approche rationnelle de caractérisation et de classification des médicaments selon leur capacité à tolérer des oublis sporadiques. Méthodologiquement, nous avons, à travers une analyse globale de sensibilité, quantifié la corrélation entre les paramètres PK/PD d'un médicament et l'effet d'irrégularité de la prise médicamenteuse. Cette approche a consisté à évaluer de façon concomitante l'influence de tous les paramètres PK/PD et à prendre en compte, par la même occasion, les relations complexes pouvant exister entre ces différents paramètres. Cette étude a été réalisée pour les inhibiteurs calciques qui sont des antihypertenseurs agissant selon un modèle indirect d'effet. En prenant en compte les valeurs des corrélations ainsi calculées, nous avons estimé et proposé un indice comparatif propre à chaque médicament. Cet indice est apte à caractériser et à classer les médicaments agissant par un même mécanisme pharmacodynamique en terme d'indulgence à des oublis de prises médicamenteuses. Il a été appliqué à quatre inhibiteurs calciques. Les résultats obtenus étaient en accord avec les données expérimentales, traduisant ainsi la pertinence et la robustesse de cette nouvelle approche. Les stratégies développées dans ce projet de doctorat sont essentiellement fondées sur l'analyse des relations complexes entre l'histoire de la prise médicamenteuse, la pharmacocinétique et la pharmacodynamique. De cette analyse, elles sont capables d'évaluer et de contrôler l'impact de l'irrégularité de la prise médicamenteuse avec une précision acceptable. De façon générale, les algorithmes qui sous-tendent ces démarches constitueront sans aucun doute, des outils efficients dans le suivi et le traitement des patients. En outre, ils contribueront à contrôler les effets néfastes de la non-observance au traitement par la mise au point de médicaments indulgents aux oublis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte : Les stratégies pharmacologiques pour traiter la schizophrénie reçoivent une attention croissante due au développement de nouvelles pharmacothérapies plus efficaces, mieux tolérées mais plus coûteuses. La schizophrénie est une maladie chronique présentant différents états spécifiques et définis par leur sévérité. Objectifs : Ce programme de recherche vise à: 1) Ãvaluer les facteurs associés au risque d'être dans un état spécifique de la schizophrénie, afin de construire les fonctions de risque de la modélisation du cours naturel de la schizophrénie; 2) Développer et valider un modèle de Markov avec microsimulations de Monte-Carlo, afin de simuler l'évolution naturelle des patients qui sont nouvellement diagnostiqués pour la schizophrénie, en fonction du profil individuel des facteurs de risque; 3) Estimer le coût direct de la schizophrénie (pour les soins de santé et autres non reliés aux soins de santé) dans la perspective gouvernementale et simuler lâimpact clinique et économique du développement dâun traitement dans une cohorte de patients nouvellement diagnostiqués avec la schizophrénie, suivis pendant les cinq premières années post-diagnostic. Méthode : Pour le premier objectif de ce programme de recherche, un total de 14 320 patients nouvellement diagnostiqués avec la schizophrénie ont été identifiés dans les bases de données de la RAMQ et de Med-Echo. Les six états spécifiques de la schizophrénie ont été définis : le premier épisode (FE), l'état de dépendance faible (LDS), lâétat de dépendance élevée (HDS), lâétat stable (Stable), lâétat de bien-être (Well) et l'état de décès (Death). Pour évaluer les facteurs associés au risque de se trouver dans chacun des états spécifiques de la schizophrénie, nous avons construit 4 fonctions de risque en se basant sur l'analyse de risque proportionnel de Cox pour des risques compétitifs. Pour le deuxième objectif, nous avons élaboré et validé un modèle de Markov avec microsimulations de Monte-Carlo intégrant les six états spécifiques de la schizophrénie. Dans le modèle, chaque sujet avait ses propres probabilités de transition entre les états spécifiques de la schizophrénie. Ces probabilités ont été estimées en utilisant la méthode de la fonction d'incidence cumulée. Pour le troisième objectif, nous avons utilisé le modèle de Markov développé précédemment. Ce modèle inclut les coûts directs de soins de santé, estimés en utilisant les bases de données de la Régie de l'assurance maladie du Québec et Med-Echo, et les coûts directs autres que pour les soins de santé, estimés à partir des enquêtes et publications de Statistique Canada. Résultats : Un total de 14 320 personnes nouvellement diagnostiquées avec la schizophrénie ont été identifiées dans la cohorte à l'étude. Le suivi moyen des sujets était de 4,4 (± 2,6) ans. Parmi les facteurs associés à lâévolution de la schizophrénie, on peut énumérer lââge, le sexe, le traitement pour la schizophrénie et les comorbidités. Après une période de cinq ans, nos résultats montrent que 41% des patients seront considérés guéris, 13% seront dans un état stable et 3,4% seront décédés. Au cours des 5 premières années après le diagnostic de schizophrénie, le coût direct moyen de soins de santé et autres que les soins de santé a été estimé à 36 701 $ canadiens (CAN) (95% CI: 36 264-37 138). Le coût des soins de santé a représenté 56,2% du coût direct, le coût de l'aide sociale 34,6% et le coût associé à lâinstitutionnalisation dans les établissements de soins de longue durée 9,2%. Si un nouveau traitement était disponible et offrait une augmentation de 20% de l'efficacité thérapeutique, le coût direct des soins de santé et autres que les soins de santé pourrait être réduit jusquâà 14,2%. Conclusion : Nous avons identifié des facteurs associés à lâévolution de la schizophrénie. Le modèle de Markov que nous avons développé est le premier modèle canadien intégrant des probabilités de transition ajustées pour le profil individuel des facteurs de risque, en utilisant des données réelles. Le modèle montre une bonne validité interne et externe. Nos résultats indiquent quâun nouveau traitement pourrait éventuellement réduire les hospitalisations et le coût associé aux établissements de soins de longue durée, augmenter les chances des patients de retourner sur le marché du travail et ainsi contribuer à la réduction du coût de l'aide sociale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.