30 resultados para Chat spinal
Resumo:
Il existe plusieurs théories du contrôle moteur, chacune présumant qu’une différente variable du mouvement est réglée par le cortex moteur. On trouve parmi elles la théorie du modèle interne qui a émis l’hypothèse que le cortex moteur programme la trajectoire du mouvement et l’activité électromyographique (EMG) d’une action motrice. Une autre, appelée l’hypothèse du point d’équilibre, suggère que le cortex moteur établisse et rétablisse des seuils spatiaux; les positions des segments du corps auxquelles les muscles et les réflexes commencent à s’activer. Selon ce dernier, les paramètres du mouvement sont dérivés sans pré-programmation, en fonction de la différence entre la position actuelle et la position seuil des segments du corps. Pour examiner de plus près ces deux théories, nous avons examiné l’effet d’un changement volontaire de l’angle du coude sur les influences cortico-spinales chez des sujets sains en employant la stimulation magnétique transcrânienne (TMS) par-dessus le site du cortex moteur projetant aux motoneurones des muscles du coude. L’état de cette aire du cerveau a été évalué à un angle de flexion du coude activement établi par les sujets, ainsi qu’à un angle d’extension, représentant un déplacement dans le plan horizontal de 100°. L’EMG de deux fléchisseurs du coude (le biceps et le muscle brachio-radial) et de deux extenseurs (les chefs médial et latéral du triceps) a été enregistrée. L’état d’excitabilité des motoneurones peut influer sur les amplitudes des potentiels évoqués moteurs (MEPs) élicitées par la TMS. Deux techniques ont été entreprises dans le but de réduire l’effet de cette variable. La première était une perturbation mécanique qui raccourcissait les muscles à l'étude, produisant ainsi une période de silence EMG. La TMS a été envoyée avec un retard après la perturbation qui entraînait la production du MEP pendant la période de silence. La deuxième technique avait également le but d’équilibrer l’EMG des muscles aux deux angles du coude. Des forces assistantes ont été appliquées au bras par un moteur externe afin de compenser les forces produites par les muscles lorsqu’ils étaient actifs comme agonistes d’un mouvement. Les résultats des deux séries étaient analogues. Un muscle était facilité quand il prenait le rôle d’agoniste d’un mouvement, de manière à ce que les MEPs observés dans le biceps fussent de plus grandes amplitudes quand le coude était à la position de flexion, et ceux obtenus des deux extenseurs étaient plus grands à l’angle d’extension. Les MEPs examinés dans le muscle brachio-radial n'étaient pas significativement différents aux deux emplacements de l’articulation. Ces résultats démontrent que les influences cortico-spinales et l’activité EMG peuvent être dissociées, ce qui permet de conclure que la voie cortico-spinale ne programme pas l’EMG à être générée par les muscles. Ils suggèrent aussi que le système cortico-spinal établit les seuils spatiaux d’activation des muscles lorsqu’un segment se déplace d’une position à une autre. Cette idée suggère que des déficiences dans le contrôle des seuils spatiaux soient à la base de certains troubles moteurs d’origines neurologiques tels que l’hypotonie et la spasticité.
Resumo:
La prévalence de l’arthrose féline augmente fortement avec l’âge atteignant plus de 80% des chats de plus de 11 ans. L'arthrose induit une douleur chronique s’exprimant par des changements de comportements et une diminution de la mobilité. Il n'existe aucun outil validé pour évaluer la douleur chronique associée à l’arthrose chez le chat. Conséquemment, aucun traitement ciblant cette douleur n’a pu être validé. Notre hypothèse de recherche est que la douleur arthrosique chez le chat induit des handicaps fonctionnels, des changements neurophysiologiques et un état d'hypersensibilité qu'il faut évaluer pour quantifier de manière fiable cette douleur et ses répercussions sur la qualité de vie de l'animal. Nos objectifs étaient 1) de développer des outils adaptés aux chats mesurant les handicaps fonctionnels grâce à des outils cinématiques, cinétiques et de suivi de l'activité motrice ; 2) de caractériser les changements fonctionnels et neurophysiologiques secondaires à la douleur arthrosique et de tester avec ces outils un traitement analgésique à base d'anti-inflammatoire non stéroïdien ; 3) de développer une technique adaptée aux chats pouvant caractériser la présence du phénomène de sensibilisation centrale à l'aide d'une évaluation de la sommation temporelle mécanique ; 4) de tester la possibilité de mesurer le métabolisme glucidique cérébral par tomographie d’émission par positrons comme marqueur des changements supraspinaux secondaires à la chronicisation de la douleur. Grâce au développement d’outils de mesure de douleur chronique objectifs, sensibles et répétables nous avons caractérisé la douleur chez les chats arthrosiques. Ils présentent des signes de boiterie quantifiée par une diminution de l’amplitude de l’articulation ou par une diminution de la force verticale d’appui au sol et une diminution de l’activité motrice quotidienne. Ces deux derniers outils ont permis de démontrer qu’un anti-inflammatoire non stéroïdien (le méloxicam) administré pendant quatre semaines réduit la douleur arthrosique. De plus, grâce au développement de tests sensoriels quantitatifs et à l'utilisation d'imagerie cérébrale fonctionnelle, nous avons démontré pour la première fois que la douleur arthrosique conduisait à des modifications du système nerveux central chez le chat. Particulièrement, les chats arthrosiques développent le phénomène de sensibilisation centrale mis en évidence par un seuil de retrait aux filament de von Frey diminué (mesure réflexe) mais aussi par une facilitation de la sommation temporelle mécanique (mesure tenant compte de la composante cognitive et émotionnelle de la douleur). L'augmentation du métabolisme cérébral dans le cortex somatosensoriel secondaire, le thalamus et la substance grise périaqueducale, souligne aussi l'importance des changements liés à la chronicisation de la douleur. Un traitement analgésique adapté à l’arthrose permettra d’améliorer la qualité de vie des chats atteints, offrira une option thérapeutique valide aux praticiens vétérinaires, et profitera aux propriétaires qui retrouveront un chat actif et sociable. La découverte de l'implication du phénomène de sensibilisation central combiné à l'investigation des changements cérébraux secondaires à la douleur chronique associée à l'arthrose par imagerie fonctionnelle ouvre de nouvelles avenues de recherche chez le chat (développement et/ou validation de traitements adaptés à l'état d'hypersensibilité) et les humains (potentiel modèle naturel de douleur chronique associée à l'arthrose).
Resumo:
A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord.
Resumo:
Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1-/- spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop a HPLC–MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system is hampered and therefore affect significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1-/- spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p < 0.0001). No significant concentration differences were observed in mouse Tac1-/- spinal cords for Met-Enk and CGRP. The analysis of Tac1-/- mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.
Resumo:
Targeted peptide methods generally use HPLC-MS/MRM approaches. Although dependent on the instrumental resolution, interferences may occur while performing analysis of complex biological matrices. HPLC-MS/MRM3 is a technique, which provides a significantly better selectivity, compared with HPLC-MS/MRM assay. HPLC-MS/MRM3 allows the detection and quantitation by enriching standard MRM with secondary product ions that are generated within the linear ion trap. Substance P (SP) and neurokinin A (NKA) are tachykinin peptides playing a central role in pain transmission. The objective of this study was to verify whether HPLC-HPLCMS/ MRM3 could provide significant advantages over a more traditional HPLC-MS/MRM assay for the quantification of SP and NKA in rat spinal cord. The results suggest that reconstructed MRM3 chromatograms display significant improvements with the nearly complete elimination of interfering peaks but the sensitivity (i.e. signal-to-noise ratio) was severely reduced. The precision (%CV) observed was between 3.5% - 24.1% using HPLC-MS/MRM and in the range of 4.3% - 13.1% with HPLC-MS/MRM3, for SP and NKA. The observed accuracy was within 10% of the theoretical concentrations tested. HPLC-MS/MRM3 may improve the assay sensitivity to detect difference between samples by reducing significantly the potential of interferences and therefore reduce instrumental errors.
Resumo:
Objectifs: Malgré que les patients souffrant de dépression majeure (DM) rapportent souvent des symptômes douloureux, la relation entre la douleur et la dépression n’est pas encore claire. Ce n’est que récemment que des études employant des paradigmes de sommation temporelle ont pu offrir une explication préliminaire de la cooccurrence de la douleur et de la dépression. Notre étude vise à évaluer la contribution des procédés spinaux et surpraspinaux dans la sensibilisation de la douleur dans la DM en utilisant un paradigme de sommation temporelle. Participants : Treize sujets sains et quatorze patients souffrant de DM ont été inclues dans l’analyse finale. Méthodes : Pour induire une sommation temporelle, nous avons utilisé des stimulations intermittentes du nerf sural de basses et hautes fréquences. La sensibilisation spinale de la douleur a été quantifiée en mesurant la variation de l’amplitude du réflex de retrait nociceptif (NFR) entre les deux conditions de stimulations, ainsi que la sensibilisation supraspinale de la douleur a été obtenue en mesurant le changement dans l’appréciation verbale de la douleur entre ces deux conditions. Résultats : Nous avons observé une sensibilisation plus élevée de la réponse NFR chez les patients dépressifs durant la condition de stimulation à haute fréquence, un effet qui n’a pas été reflété par une sensibilisation amplifiée des appréciations subjectives de la douleur durant l’expérience. Néanmoins, nous avons observé une association entre la sensibilisation spinale et les symptômes somatiques douloureux chez les patients DM. Conclusion : Ces résultats suggèrent une sensibilisation spinale amplifiée dans la DM, ce qui pourrait expliquer la prévalence élevée des symptômes somatiques douloureux chez ces patients.
Resumo:
Study Design Retrospective study of surgical outcome. Objectives To evaluate quantitatively the changes in trunk surface deformities after scoliosis spinal surgery in Lenke 1A adolescent idiopathic scoliosis (AIS) patients and to compare it with changes in spinal measurements. Summary of Background Data Most studies documenting scoliosis surgical outcome used either radiographs to evaluate changes in the spinal curve or questionnaires to assess patients health-related quality of life. Because improving trunk appearance is a major reason for patients and their parents to seek treatment, this study focuses on postoperative changes in trunk surface deformities. Recently, a novel approach to quantify trunk deformities in a reliable, automatic, and noninvasive way has been proposed. Methods Forty-nine adolescents with Lenke 1A idiopathic scoliosis treated surgically were included. The back surface rotation and trunk lateral shift were computed on trunk surface acquisitions before and at least 6 months after surgery. We analyzed the effect of age, height, weight, curve severity, and flexibility before surgery, length of follow-up, and the surgical technique. For 25 patients with available three-dimensional (3D) spinal reconstructions, we compared changes in trunk deformities with changes in two-dimensional (2D) and 3D spinal measurements. Results The mean correction rates for the back surface rotation and the trunk lateral shift are 18% and 50%, respectively. Only the surgical technique had a significant effect on the correction rate of the back surface rotation. Direct vertebral derotation and reduction by spine translation provide a better correction of the rib hump (22% and 31% respectively) than the classic rod rotation technique (8%). The reductions of the lumbar Cobb angle and the apical vertebrae transverse rotation explain, respectively, up to 17% and 16% the reduction of the back surface rotation. Conclusions Current surgical techniques perform well in realigning the trunk; however, the correction of the deformity in the transverse plane proves to be more challenging. More analysis on the positive effect of vertebral derotation on the rib hump correction is needed. Level of evidence III.
Resumo:
Improving the appearance of the trunk is an important goal of scoliosis surgical treatment, mainly in patients' eyes. Unfortunately, existing methods for assessing postoperative trunk appearance are rather subjective as they rely on a qualitative evaluation of the trunk shape. In this paper, an objective method is proposed to quantify the changes in trunk shape after surgery. Using a non-invasive optical system, the whole trunk surface is acquired and reconstructed in 3D. Trunk shape is described by two functional measurements spanning the trunk length: the lateral deviation and the axial rotation. To measure the pre and postoperative differences, a correction rate is computed for both measurements. On a cohort of 36 scoliosis patients with the same spinal curve type who underwent the same surgical approach, surgery achieved a very good correction of the lateral trunk deviation (median correction of 76%) and a poor to moderate correction of the back axial rotation (median correction of 19%). These results demonstrate that after surgery, patients are still confronted with residual trunk deformity, mainly a persisting hump on the back. That can be explained by the fact that current scoliosis assessment and treatment planning are based solely on radiographic measures of the spinal deformity and do not take trunk deformity into consideration. It is believed that with our novel quantitative trunk shape descriptor, clinicians and surgeons can now objectively assess trunk deformity and postoperative shape and propose new treatment strategies that could better address patients' concern about their appearance. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Substance P (SP) play a central role in nociceptive transmission and it is an agonist of the Neurokinin-1 receptor located in the lamina I of the spinal cord. SP is a major proteolytic product of the protachykinin-1 primarily synthesized in neurons. Proprotein convertases (PCs) are extensively expressed in the central nervous system (CNS) and specifically cleave at C-terminal of either a pair of basic amino acids, or a single basic residue. The proteolysis control of endogenous protachykinins has a profound impact on pain perception and the role of PCs remain unclear. The objective of this study was to decipher the role of PC1 and PC2 in the proteolysis surrogate protachykinins (i.e. Tachykinin 20-68 and Tachykinin 58-78) using cellular fractions of spinal cords from wild type (WT), PC1-/+ and PC2-/+ animals and mass spectrometry. Full-length Tachykinin 20-68 and Tachykinin 58-78 was incubated for 30 minutes in WT, PC1-/+ and PC2-/+ mouse spinal cord S9 fractions and specific C-terminal peptide fragments were identified and quantified by mass spectrometry. The results clearly demonstrate that both PC1 and PC2 mediate the formation of SP and Tachykinin 58-71, an important SP precursor, with over 50% reduction of the rate of formation in mutant PC 1 and PC2 mouse S9 spinal cord fractions. The results obtained revealed that PC1 and PC2 are involved in the C-terminal processing of protachykinin peptides and suggest a major role in the maturation of the protachykinin-1 protein.
Resumo:
Dynorphins are important neuropeptides with a central role in nociception and pain alleviation. Many mechanisms regulate endogenous dynorphin concentrations, including proteolysis. Proprotein convertases (PCs) are widely expressed in the central nervous system and specifically cleave at C-terminal of either a pair of basic amino acids, or a single basic residue. The proteolysis control of endogenous Big Dynorphin (BDyn) and Dynorphin A (Dyn A) levels has a profound impact on pain perception and the role of PCs remain unclear. The objective of this study was to decipher the role of PC1 and PC2 in the proteolysis control of BDyn and Dyn A levels using cellular fractions of spinal cords from wild type (WT), PC1-/+ and PC2-/+ animals and mass spectrometry. Our results clearly demonstrate that both PC1 and PC2 are involved in the proteolysis regulation of BDyn and Dyn A with a more important role for PC1. C-terminal processing of BDyn generates specific peptide fragments Dynorphin 1-19, Dynorphin 1-13, Dynorphin 1-11 and Dynorphin 1-7 and C-terminal processing of Dyn A generates Dynorphin 1-13, Dynorphin 1-11 and Dynorphin 1-7, all these peptide fragments are associated with PC1 or PC2 processing. Moreover, proteolysis of BDyn leads to the formation of Dyn A and Leu-Enk, two important opioid peptides. The rate of formation of both is significantly reduced in cellular fractions of spinal cord mutant mice. As a consequence, even partial inhibition of PC1 or PC2 may impair the endogenous opioid system.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.