21 resultados para CRANIOFACIAL DEFORMITIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3-D assessment of scoliotic deformities relies on an accurate 3-D reconstruction of bone structures from biplanar X-rays, which requires a precise detection and matching of anatomical structures in both views. In this paper, we propose a novel semiautomated technique for detecting complete scoliotic rib borders from PA-0° and PA-20° chest radiographs, by using an edge-following approach with multiple-path branching and oriented filtering. Edge-following processes are initiated from user starting points along upper and lower rib edges and the final rib border is obtained by finding the most parallel pair among detected edges. The method is based on a perceptual analysis leading to the assumption that no matter how bent a scoliotic rib is, it will always present relatively parallel upper and lower edges. The proposed method was tested on 44 chest radiographs of scoliotic patients and was validated by comparing pixels from all detected rib borders against their reference locations taken from the associated manually delineated rib borders. The overall 2-D detection accuracy was 2.64 ± 1.21 pixels. Comparing this accuracy level to reported results in the literature shows that the proposed method is very well suited for precisely detecting borders of scoliotic ribs from PA-0° and PA-20° chest radiographs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design Retrospective study of surgical outcome. Objectives To evaluate quantitatively the changes in trunk surface deformities after scoliosis spinal surgery in Lenke 1A adolescent idiopathic scoliosis (AIS) patients and to compare it with changes in spinal measurements. Summary of Background Data Most studies documenting scoliosis surgical outcome used either radiographs to evaluate changes in the spinal curve or questionnaires to assess patients health-related quality of life. Because improving trunk appearance is a major reason for patients and their parents to seek treatment, this study focuses on postoperative changes in trunk surface deformities. Recently, a novel approach to quantify trunk deformities in a reliable, automatic, and noninvasive way has been proposed. Methods Forty-nine adolescents with Lenke 1A idiopathic scoliosis treated surgically were included. The back surface rotation and trunk lateral shift were computed on trunk surface acquisitions before and at least 6 months after surgery. We analyzed the effect of age, height, weight, curve severity, and flexibility before surgery, length of follow-up, and the surgical technique. For 25 patients with available three-dimensional (3D) spinal reconstructions, we compared changes in trunk deformities with changes in two-dimensional (2D) and 3D spinal measurements. Results The mean correction rates for the back surface rotation and the trunk lateral shift are 18% and 50%, respectively. Only the surgical technique had a significant effect on the correction rate of the back surface rotation. Direct vertebral derotation and reduction by spine translation provide a better correction of the rib hump (22% and 31% respectively) than the classic rod rotation technique (8%). The reductions of the lumbar Cobb angle and the apical vertebrae transverse rotation explain, respectively, up to 17% and 16% the reduction of the back surface rotation. Conclusions Current surgical techniques perform well in realigning the trunk; however, the correction of the deformity in the transverse plane proves to be more challenging. More analysis on the positive effect of vertebral derotation on the rib hump correction is needed. Level of evidence III.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the external manifestations of scoliosis, the rib hump, which is associated with the ribs' deformities and rotations, constitutes the most disturbing aspect of the scoliotic deformity for patients. A personalized 3-D model of the rib cage is important for a better evaluation of the deformity, and hence, a better treatment planning. A novel method for the 3-D reconstruction of the rib cage, based only on two standard radiographs, is proposed in this paper. For each rib, two points are extrapolated from the reconstructed spine, and three points are reconstructed by stereo radiography. The reconstruction is then refined using a surface approximation. The method was evaluated using clinical data of 13 patients with scoliosis. A comparison was conducted between the reconstructions obtained with the proposed method and those obtained by using a previous reconstruction method based on two frontal radiographs. A first comparison criterion was the distances between the reconstructed ribs and the surface topography of the trunk, considered as the reference modality. The correlation between ribs axial rotation and back surface rotation was also evaluated. The proposed method successfully reconstructed the ribs of the 6th-12th thoracic levels. The evaluation results showed that the 3-D configuration of the new rib reconstructions is more consistent with the surface topography and provides more accurate measurements of ribs axial rotation.