18 resultados para Breife, Bertil: Flight identification of European seabirds
Resumo:
The carcass of an adult male beluga (Delphinapterus leucas) was found beach cast in 2008 on the shore of the St. Lawrence Estuary at Rivière-Ouelle, Quebec, Canada. The carcass was transported to the Faculté de médecine vétérinaire of the Université de Montréal for postmortem examination. Aspiration pneumonia was the probable cause of death. Necropsy revealed a focal papilloma-like penile lesion, characterized by focal mucosal thickening with disorganization of the epithelial layers and lymphoplasmacytic infiltration. A pan-herpesvirus nested PCR assay on frozen tissue from the penile lesion was positive. The PCR product sequencing revealed a partial herpesvirus DNA polymerase (DPOL) gene sequence of 600 nucleotides. Its nearest nucleotide identity was with the partial DPOL gene of an alphaherpesvirus, bovine herpesvirus 5 (79.5% identity). It also shared high identity with several other marine mammal herpesviruses (50.2 to 77.3% identity). This new herpesvirus was tentatively named beluga whale herpesvirus (BWHV). Virus isolation was unsuccessful. The pathogenic potential of BWHV is unknown, but the evaluation of archived tissues suggests that the virus is endemic in the St. Lawrence Estuary beluga population.
Resumo:
On December 8, 2008, a male fisher (Martes pennanti) housed in a quarantine enclosure at the St-Félicien Zoo was found dead with multiple skin ulcers on the muzzle and plantar pads. At necropsy, no major findings were found, and a specific cause of death was not determined microscopically. However, at the borders of ulcerated sites, there were increased numbers of koilocytes, with perinuclear vacuolation and nuclear enlargement. A pan-herpesvirus nested polymerase chain reaction (PCR) assay was conducted, and an expected PCR product of 230 nucleotides was obtained within tissues collected from around the skin ulcers. Other tissues, including intestines and pool of lung, liver, and kidney, tested negative. The obtained PCR amplicon was sequenced and was highly related to the partial viral DNA polymerase (DPOL) gene of Mustelid herpesvirus 1. Virus isolation was negative, and no virion was detected by electron microscopy. The pathogenic potential of this novel herpesvirus and its role in the death of the fisher are unknown.
Resumo:
Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM) and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are phenotypically different from MARC-145 cells and are an additional tool that could be used to study PRRSV pathogenesis mechanisms in vitro.