17 resultados para Atomic Displacement Parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La construction modulaire est une stratégie émergente qui permet la fabrication de matériaux ordonnés à l’échelle atomique. Elle consiste en l’association programmée de sous-unités moléculaires via des sites réactifs judicieusement sélectionnés. L’application de cette stratégie a d’ores et déjà produit des matériaux aux propriétés remarquables, notamment les réseaux organiques covalents, dans lesquels des atomes de carbone et d’autres éléments légers sont liés de manière covalente. Bien que des matériaux assemblés par des interactions non-covalentes puissent être préparés sous la forme de monocristaux macroscopiques de cette façon, ceci n’était pas possible dans le cas des réseaux organiques covalents. Afin de pallier cette lacune, nous avons choisi d’étudier des réactions de polymérisation réversibles ayant lieu par un mécanisme d’addition. En effet, l’hypothèse de départ de cette thèse suppose qu’un tel processus émule le phénomène de cristallisation classique – régi par des interactions non-covalentes – et favorise la formation de monocristaux de dimensions importantes. Pour tester la validité de cette hypothèse, nous avons choisi d’étudier la polymérisation des composés polynitroso aromatiques puisque la dimérisation des nitrosoarènes est réversible et procède par addition. Dans un premier temps, nous avons revu en profondeur la littérature portant sur la dimérisation des nitrosoarènes. À partir des données alors recueillies, nous avons conçu, dans un deuxième temps, une série de composés polynitroso ayant le potentiel de former des réseaux organiques covalents bi- et tridimensionnels. Les paramètres thermodynamiques propres à leur polymérisation ont pu être estimés grâce à l’étude de composés mononitroso modèles. Dans un troisième temps, nous avons synthétisé les divers composés polynitroso visés par notre étude. Pour y parvenir, nous avons eu à développer une nouvelle méthodologie de synthèse des poly(N-arylhydroxylamines) – les précurseurs directs aux composés polynitroso. Dans un quatrième temps, nous avons étudié la polymérisation des composés polynitroso. En dépit de difficultés d’ordre pratique causées par la polymérisation spontanée de ces composés, nous avons pu identifier les conditions propices à leur polymérisation en réseaux organiques covalents hautement cristallins. Plusieurs nouveaux réseaux covalents tridimensionnels ont ainsi été produits sous la forme de monocristaux de dimensions variant entre 30 µm et 500 µm, confirmant la validité de notre hypothèse de départ. Il a par conséquent été possible de résoudre la structure de ces cristaux par diffraction de rayons X sur monocristal, ce qui n’avait jamais été possible dans le passé pour ce genre de matériau. Ces cristaux sont remarquablement uniformes et les polymères qui les composent ont des masses moléculaires extrêmement élevées (1014-1017 g/mol). Toutefois, la polymérisation de la majorité des composés polynitroso étudiés a plutôt conduit à des solides amorphes ou à des solides cristallins constitués de la forme monomérique de ces composés. D’autres composés nitroso modèles ont alors été préparés afin d’expliquer ce comportement, et des hypothèses ont été émises à partir des données alors recueillies. Enfin, les structures de plusieurs composés polynitroso ayant cristallisés sous une forme monomérique ont été analysés en détails par diffraction des rayons X. Notre stratégie, qui consiste en l’utilisation de monomères ayant la capacité de polymériser spontanément par un processus d’addition réversible, semble donc prometteuse pour obtenir de nouveaux réseaux covalents monocristallins à partir de composés polynitroso ou d’autres monomères de nature similaire. De plus, les résultats présentés au cours de cette thèse établissent un lien entre la science des polymères et la chimie supramoléculaire, en illustrant comment des structures ordonnées, covalentes ou non covalentes, peuvent toutes deux être construites de façon prévisible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le cancer du sein est le cancer le plus fréquent chez la femme. Il demeure la cause de mortalité la plus importante chez les femmes âgées entre 35 et 55 ans. Au Canada, plus de 20 000 nouveaux cas sont diagnostiqués chaque année. Les études scientifiques démontrent que l'espérance de vie est étroitement liée à la précocité du diagnostic. Les moyens de diagnostic actuels comme la mammographie, l'échographie et la biopsie comportent certaines limitations. Par exemple, la mammographie permet de diagnostiquer la présence d’une masse suspecte dans le sein, mais ne peut en déterminer la nature (bénigne ou maligne). Les techniques d’imagerie complémentaires comme l'échographie ou l'imagerie par résonance magnétique (IRM) sont alors utilisées en complément, mais elles sont limitées quant à la sensibilité et la spécificité de leur diagnostic, principalement chez les jeunes femmes (< 50 ans) ou celles ayant un parenchyme dense. Par conséquent, nombreuses sont celles qui doivent subir une biopsie alors que leur lésions sont bénignes. Quelques voies de recherche sont privilégiées depuis peu pour réduire l`incertitude du diagnostic par imagerie ultrasonore. Dans ce contexte, l’élastographie dynamique est prometteuse. Cette technique est inspirée du geste médical de palpation et est basée sur la détermination de la rigidité des tissus, sachant que les lésions en général sont plus rigides que le tissu sain environnant. Le principe de cette technique est de générer des ondes de cisaillement et d'en étudier la propagation de ces ondes afin de remonter aux propriétés mécaniques du milieu via un problème inverse préétabli. Cette thèse vise le développement d'une nouvelle méthode d'élastographie dynamique pour le dépistage précoce des lésions mammaires. L'un des principaux problèmes des techniques d'élastographie dynamiques en utilisant la force de radiation est la forte atténuation des ondes de cisaillement. Après quelques longueurs d'onde de propagation, les amplitudes de déplacement diminuent considérablement et leur suivi devient difficile voir impossible. Ce problème affecte grandement la caractérisation des tissus biologiques. En outre, ces techniques ne donnent que l'information sur l'élasticité tandis que des études récentes montrent que certaines lésions bénignes ont les mêmes élasticités que des lésions malignes ce qui affecte la spécificité de ces techniques et motive la quantification de d'autres paramètres mécaniques (e.g.la viscosité). Le premier objectif de cette thèse consiste à optimiser la pression de radiation acoustique afin de rehausser l'amplitude des déplacements générés. Pour ce faire, un modèle analytique de prédiction de la fréquence de génération de la force de radiation a été développé. Une fois validé in vitro, ce modèle a servi pour la prédiction des fréquences optimales pour la génération de la force de radiation dans d'autres expérimentations in vitro et ex vivo sur des échantillons de tissu mammaire obtenus après mastectomie totale. Dans la continuité de ces travaux, un prototype de sonde ultrasonore conçu pour la génération d'un type spécifique d'ondes de cisaillement appelé ''onde de torsion'' a été développé. Le but est d'utiliser la force de radiation optimisée afin de générer des ondes de cisaillement adaptatives, et de monter leur utilité dans l'amélioration de l'amplitude des déplacements. Contrairement aux techniques élastographiques classiques, ce prototype permet la génération des ondes de cisaillement selon des parcours adaptatifs (e.g. circulaire, elliptique,…etc.) dépendamment de la forme de la lésion. L’optimisation des dépôts énergétiques induit une meilleure réponse mécanique du tissu et améliore le rapport signal sur bruit pour une meilleure quantification des paramètres viscoélastiques. Il est aussi question de consolider davantage les travaux de recherches antérieurs par un appui expérimental, et de prouver que ce type particulier d'onde de torsion peut mettre en résonance des structures. Ce phénomène de résonance des structures permet de rehausser davantage le contraste de déplacement entre les masses suspectes et le milieu environnant pour une meilleure détection. Enfin, dans le cadre de la quantification des paramètres viscoélastiques des tissus, la dernière étape consiste à développer un modèle inverse basé sur la propagation des ondes de cisaillement adaptatives pour l'estimation des paramètres viscoélastiques. L'estimation des paramètres viscoélastiques se fait via la résolution d'un problème inverse intégré dans un modèle numérique éléments finis. La robustesse de ce modèle a été étudiée afin de déterminer ces limites d'utilisation. Les résultats obtenus par ce modèle sont comparés à d'autres résultats (mêmes échantillons) obtenus par des méthodes de référence (e.g. Rheospectris) afin d'estimer la précision de la méthode développée. La quantification des paramètres mécaniques des lésions permet d'améliorer la sensibilité et la spécificité du diagnostic. La caractérisation tissulaire permet aussi une meilleure identification du type de lésion (malin ou bénin) ainsi que son évolution. Cette technique aide grandement les cliniciens dans le choix et la planification d'une prise en charge adaptée.