46 resultados para Anterior Cingolate Cortex
Resumo:
La navigation repose en majeure partie sur la vision puisque ce sens nous permet de rassembler des informations spatiales de façon simultanée et de mettre à jour notre position par rapport à notre environnement. Pour plusieurs aveugles qui se fient à l’audition, le toucher, la proprioception, l’odorat et l’écholocation pour naviguer, sortir à l’extérieur de chez soi peut représenter un défi considérable. Les recherches sur le circuit neuronal de la navigation chez cette population en particulier s’avèrent donc primordiales pour mieux adapter les ressources aux handicapés visuels et réussir à les sortir de leur isolement. Les aveugles de naissance constituent aussi une population d’intérêt pour l’étude de la neuroplasticité. Comme leur cerveau s’est construit en absence d’intrant visuel, la plupart des structures reliées au sens de la vue sont réduites en volume par rapport à ceux de sujets voyants. De plus, leur cortex occipital, une région normalement dédiée à la vision, possède une activité supramétabolique au repos, ce qui peut représenter un territoire vierge pouvant être recruté par les autres modalités pour exécuter diverses tâches sensorielles. Plusieurs chercheurs ont déjà démontré l’implication de cette région dans des tâches sensorielles comme la discrimination tactile et la localisation auditive. D’autres changements plastiques de nature intramodale ont aussi été observés dans le circuit neuronal de la navigation chez ces aveugles. Par exemple, la partie postérieure de l’hippocampe, impliquée dans l’utilisation de cartes mentales, est réduite en volume alors que la section antérieure est élargie chez ces sujets. Bien que ces changements plastiques anatomiques aient bel et bien été observés chez les aveugles de naissance, il reste toutefois à les relier avec leur aspect fonctionnel. Le but de la présente étude était d’investiguer les corrélats neuronaux de la navigation chez l’aveugle de naissance tout en les reliant avec leurs habiletés spatio-cognitives. La première étude comportementale a permis d’identifier chez les aveugles congénitaux une difficulté d’apprentissage de routes tactiles construites dans des labyrinthes de petite échelle. La seconde étude, employant la technique d’imagerie par résonance magnétique fonctionnelle, a relié ces faiblesses au recrutement de régions cérébrales impliquées dans le traitement d’une perspective égocentrique, comme le lobule pariétal supérieur droit. Alors que des sujets voyants aux yeux bandés excellaient dans la tâche des labyrinthes, ces derniers recrutaient des structures impliquées dans un traitement allocentrique, comme l’hippocampe et le parahippocampe. Par ailleurs, la deuxième étude a confirmé le recrutement du cortex occipital dans une tâche de navigation chez les aveugles seulement. Ceci confirme l’implication de la plasticité intermodale dans des tâches cognitives de plus haut niveau, comme la navigation.
Resumo:
En raison de l’utilisation d’un mode de communication totalement différent de celui des entendants, le langage des signes, et de l’absence quasi-totale d’afférences en provenance du système auditif, il y a de fortes chances que d’importantes modifications fonctionnelles et structurales s’effectuent dans le cerveau des individus sourds profonds. Les études antérieures suggèrent que cette réorganisation risque d’avoir des répercussions plus importantes sur les structures corticales situées le long de la voie visuelle dorsale qu’à l’intérieur de celles situées à l’intérieur de la voie ventrale. L’hypothèse proposée par Ungerleider et Mishkin (1982) quant à la présence de deux voies visuelles dans les régions occipitales, même si elle demeure largement acceptée dans la communauté scientifique, s’en trouve aussi relativement contestée. Une voie se projetant du cortex strié vers les régions pariétales postérieures, est impliquée dans la vision spatiale, et l’autre se projetant vers les régions du cortex temporal inférieur, est responsable de la reconnaissance de la forme. Goodale et Milner (1992) ont par la suite proposé que la voie dorsale, en plus de son implication dans le traitement de l’information visuo-spatiale, joue un rôle dans les ajustements sensori-moteurs nécessaires afin de guider les actions. Dans ce contexte, il est tout à fait plausible de considérer qu’un groupe de personne utilisant un langage sensori-moteur comme le langage des signes dans la vie de tous les jours, s’expose à une réorganisation cérébrale ciblant effectivement la voie dorsale. L’objectif de la première étude est d’explorer ces deux voies visuelles et plus particulièrement, la voie dorsale, chez des individus entendants par l’utilisation de deux stimuli de mouvement dont les caractéristiques physiques sont très similaires, mais qui évoquent un traitement relativement différent dans les régions corticales visuelles. Pour ce faire, un stimulus de forme définie par le mouvement et un stimulus de mouvement global ont été utilisés. Nos résultats indiquent que les voies dorsale et ventrale procèdent au traitement d’une forme définie par le mouvement, tandis que seule la voie dorsale est activée lors d’une tâche de mouvement global dont les caractéristiques psychophysiques sont relativement semblables. Nous avons utilisé, subséquemment, ces mêmes stimulations activant les voies dorsales et ventrales afin de vérifier quels pourraient être les différences fonctionnelles dans les régions visuelles et auditives chez des individus sourds profonds. Plusieurs études présentent la réorganisation corticale dans les régions visuelles et auditives en réponse à l’absence d’une modalité sensorielle. Cependant, l’implication spécifique des voies visuelles dorsale et ventrale demeure peu étudiée à ce jour, malgré plusieurs résultats proposant une implication plus importante de la voie dorsale dans la réorganisation visuelle chez les sourds. Suite à l’utilisation de l’imagerie cérébrale fonctionnelle pour investiguer ces questions, nos résultats ont été à l’encontre de cette hypothèse suggérant une réorganisation ciblant particulièrement la voie dorsale. Nos résultats indiquent plutôt une réorganisation non-spécifique au type de stimulation utilisé. En effet, le gyrus temporal supérieur est activé chez les sourds suite à la présentation de toutes nos stimulations visuelles, peu importe leur degré de complexité. Le groupe de participants sourds montre aussi une activation du cortex associatif postérieur, possiblement recruté pour traiter l’information visuelle en raison de l’absence de compétition en provenance des régions temporales auditives. Ces résultats ajoutent aux données déjà recueillies sur les modifications fonctionnelles qui peuvent survenir dans tout le cerveau des personnes sourdes, cependant les corrélats anatomiques de la surdité demeurent méconnus chez cette population. Une troisième étude se propose donc d’examiner les modifications structurales pouvant survenir dans le cerveau des personnes sourdes profondes congénitales ou prélinguales. Nos résultats montrent que plusieurs régions cérébrales semblent être différentes entre le groupe de participants sourds et celui des entendants. Nos analyses ont montré des augmentations de volume, allant jusqu’à 20%, dans les lobes frontaux, incluant l’aire de Broca et d’autres régions adjacentes impliqués dans le contrôle moteur et la production du langage. Les lobes temporaux semblent aussi présenter des différences morphométriques même si ces dernières ne sont pas significatives. Enfin, des différences de volume sont également recensées dans les parties du corps calleux contenant les axones permettant la communication entre les régions temporales et occipitales des deux hémisphères.
Resumo:
Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.
Resumo:
Les neurones du cortex visuel primaire (aire 17) du chat adulte répondent de manière sélective à différentes propriétés d’une image comme l’orientation, le contraste ou la fréquence spatiale. Cette sélectivité se manifeste par une réponse sous forme de potentiels d’action dans les neurones visuels lors de la présentation d’une barre lumineuse de forme allongée dans les champs récepteurs de ces neurones. La fréquence spatiale (FS) se mesure en cycles par degré (cyc./deg.) et se définit par la quantité de barres lumineuses claires et sombres présentées à une distance précise des yeux. Par ailleurs, jusqu’à récemment, l’organisation corticale chez l’adulte était considérée immuable suite à la période critique post-natale. Or, lors de l'imposition d'un stimulus non préféré, nous avons observé un phénomène d'entrainement sous forme d'un déplacement de la courbe de sélectivité à la suite de l'imposition d'une FS non-préférée différente de la fréquence spatiale optimale du neurone. Une deuxième adaptation à la même FS non-préférée induit une réponse neuronale différente par rapport à la première imposition. Ce phénomène de "gain cortical" avait déjà été observé dans le cortex visuel primaire pour ce qui est de la sélectivité à l'orientation des barres lumineuses, mais non pour la fréquence spatiale. Une telle plasticité à court terme pourrait être le corrélat neuronal d'une modulation de la pondération relative du poids des afférences synaptiques.
Resumo:
Les lésions tumorales cortico-surrénaliennes sont majoritairement des adénomes bénins et très rarement des carcinomes. Les altérations génétiques impliquées dans le développement des tumeurs cortico-surrénaliennes sporadiques, plus particulièrement au stade malin, demeurent à ce jour très peu connues. Lors de travaux récents menant à l’identification d’altérations génétiques de β-CATÉNINE nous avons constaté que plusieurs tumeurs présentaient une accumulation nucléo/cytoplasmique de la protéine β-CATÉNINE sans toutefois contenir de mutations pour ce gène. Nous avons donc émis l’hypothèse que, comme pour d’autres types de cancers, d’autres composants de la voie de signalisation Wnt/β-CATÉNINE, tel qu’AXIN2, pourrait être impliqués dans le développement des tumeurs du cortex surrénalien. De plus, plusieurs aberrations dans l’expression d’AXIN2 et de β-CATÉNINE sont associées à des tumeurs présentant de l’instabilité microsatellite dans d’autres types de cancer, notamment le cancer gastrique et colorectal. Nous avons donc étudié une cohorte de 30 adénomes, 6 carcinomes, 5 AIMAH, 3 hyperplasies ACTH-dépendante et 5 PPNAD ainsi que les lignées cellulaires de carcinomes cortico-surrénaliens humains H295R et SW13. Une étude préliminaire du statut MSI a également été réalisée sur 10 tumeurs contenant une mutation pour AXIN2 et/ou β-CATÉNINE. Nous avons trouvé des mutations d’AXIN2 dans 7% des adénomes (2/30) et 17% des carcinomes (1/6) cortico-surrénaliens. L’analyse fonctionnelle des mutations par immunohistochimie, analyse western blot et analyse de RT-PCR en temps réel a révélé une diminution de l’expression d’AXIN2 associée à cette mutation. L’analyse préliminaire MSI a démontré 1 échantillon AIMAH MSI-H, c’est-à-dire instable pour le locus BAT-25 et BAT-26 et 3 autres adénomes sécrétant de l’aldostérone instables seulement pour le locus BAT-26. Ainsi, ces travaux permirent d’identifier une nouvelle altération génétique associée au développement des tumeurs du cortex surrénalien en plus de rapporter pour la première fois la présence de MSI-H dans ce type de tumeurs.
Resumo:
L’embranchement Hemichordata regroupe les classes Enteropneusta et Pterobranchia. Hemichordata constitue, avec l’embranchement Echinodermata, le groupe-frère des chordés. Les entéropneustes sont des organismes vermiformes solitaires qui vivent sous ou à la surface du substrat et s’alimentent généralement par déposivorie, alors que les ptérobranches sont des organismes coloniaux filtreurs habitant dans un réseau de tubes appelé coenecium. Ce mémoire présente trois études dont le point commun est l’utilisation des hémichordés actuels pour répondre à des questions concernant l’évolution des hémichordés, des chordés, et du super-embranchement qui les regroupe, Deuterostomia. Notre première étude démontre que les fentes pharyngiennes, l’organe pré-oral cilié (POCO) et le pharynx de l’entéropneuste Protoglossus graveolens sont utilisés pour l’alimentation par filtration. Le système de filtration de P. graveolens permet la capture de particules jusqu’à 1.3 um, à un débit de 4.05 mm.s-1, pour une demande énergétique de 0.009 uW. Les similarités structurales et fonctionnelles avec le système de filtration des céphalochordés suggèrent que la filtration pharyngienne est ancestrale aux deutérostomes. Lors de notre deuxième étude, nous avons exploré l’hypothèse selon laquelle le POCO des entéropneustes, une structure ciliée pré-buccale au rôle possiblement chémorécepteur, serait homologue au « wheel organ » des céphalochordés et à l’adénohypophyse des vertébrés. Pour cela, nous avons déterminé par immunohistochimie l’expression de Pit-1, un facteur de transcription spécifique à ces deux structures, chez l’entéropneuste Saccoglossus pusillus. Pit-1 est exprimé dans des cellules sensorielles du POCO, mais aussi dans des cellules épithéliales distribuées dans le proboscis, collet et tronc. Ce patron d’expression ne permet pas de confirmer ou rejeter l’homologie du POCO et de l’adénohypophyse des vertébrés. Lors de notre troisième étude, nous avons caractérisé l’ultrastructure du coenecium des ptérobranches Cephalodiscus hodgsoni, Cephalodiscus nigrescens et Cephalodiscus densus par microscopie électronique à transmisison et à balayage. Cephalodiscus est le groupe frère de Graptolithina, un groupe qui inclut les graptolithes éteints ainsi que les ptérobranches du genre Rhabdopleura. Nous avons décrit les types de fibrilles de collagène présents, leur taille et leur organisation, ainsi que l’organisation globale du coenecium. Nous avons ainsi démontré la présence chez Cephalodiscus d’une organisation similaire au paracortex, pseudocortex et eucortex des graptolithes. La présence chez Cephalodiscus de ce type d’organisation suggère que le cortex est ancestral à la classe Pterobranchia. Ces trois études illustrent plusieurs axes importants de la recherche sur les hémichordés, qui en intégrant des données morphologiques, fonctionnelles et moléculaires permet de reconstruire certains évènements clés de l’évolution des deutérostomes.
Resumo:
Le développement du système nerveux central (SNC) chez les vertébrés est un processus d'une extrême complexité qui nécessite une orchestration moléculaire très précise. Certains gènes exprimés très tôt lors du développement embryonnaire sont d'une importance capitale pour la formation du SNC. Parmi ces gènes, on retrouve le facteur de transcription à Lim homéodomaine Lhx2. Les embryons de souris mutants pour Lhx2 (Lhx2-/-) souffre d'une hypoplasie du cortex cérébral, sont anophtalmiques et ont un foie de volume réduit. Ces embryons mutants meurent in utero au jour embryonnaire 16 (e16) dû à une déficience en érythrocytes matures. L'objectif principal de cette thèse est de caractériser le rôle moléculaire de Lhx2 dans le développement des yeux et du cortex cérébral. Lhx2 fait partie des facteurs de transcription à homéodomaine exprimé dans la portion antérieure de la plaque neurale avec Rx, Pax6, Six3. Le développement de l'oeil débute par une évagination bilatérale de cette région. Nous démontrons que l'expression de Lhx2 est cruciale pour les premières étapes de la formation de l'oeil. En effet, en absence de Lhx2, l'expression de Rx, Six3 et Pax6 est retardée dans la plaque neurale antérieure. Au stade de la formation de la vésicule optique, l'absence de Lhx2 empêche l'activation de Six6 (un facteur de transcription également essentiel au développement de l'œil). Nous démontrons que Lhx2 et Pax6 coopèrent en s'associant au promoteur de Six6 afin de promouvoir sa trans-activation. Donc, Lhx2 est un gène essentiel pour la détermination de l'identité rétinienne au niveau de la plaque neurale. Plus tard, il collabore avec Pax6 pour établir l'identité rétinienne définitive et promouvoir la prolifération cellulaire. De plus, Lhx2 est fortement exprimé dans le télencéphale, région qui donnera naissance au cortex cérébral. L'absence de Lhx2 entraîne une diminution de la prolifération des cellules progénitrices neurales dans cette région à e12.5. Nous démontrons qu'en absence de Lhx2, les cellules progénitrices neurales (cellules de glie radiale) se différencient prématurément en cellules progénitrices intermédiaires et en neurones post-mitotiques. Ces phénotypes sont corrélés à une baisse d'activité de la voie Notch. En absence de Lhx2, DNER (un ligand atypique de la voie Notch) est fortement surexprimé dans le télencéphale. De plus, Lhx2 et des co-répresseurs s'associent à la chromatine de la région promotrice de DNER. Nous concluons que Lhx2 permet l'activation de la voie Notch dans le cortex cérébral en développement en inhibant la transcription de DNER, qui est un inhibiteur de la voie Notch dans ce contexte particulier. Lhx2 permet ainsi la maintenance et la prolifération des cellules progénitrices neurales.
Resumo:
Bien que les troubles cognitifs soient un aspect essentiel de la schizophrénie, le dysfonctionnement des systèmes émotionnels y est également considéré comme un élément très important de cette maladie d’autant plus que plusieurs régions du cerveau sont concernées par la régulation émotionnelle. Le principal objectif du présent travail était d’explorer, en imagerie par résonnance magnétique fonctionnelle (IRMf), l’effet de la ziprasidone sur les différentes réponses neuronales à l’affichage de stimuli émotionnels au niveau de la région préfrontale,particulièrement dans le cortex cingulaire antérieur [CCA], le cortex orbito-frontal [COF] et le cortex préfrontal dorso-latéral [CPFDL]. Nous avons examiné les activations cérébrales, chez des patients souffrants de schizophrénie avant et après médication à la ziprasidone, en leur présentant des séries d’images émotionnellement chargées (négatives, neutres et positives) associées à différentes instructions quand aux types d’images qu’ils devaient sélectionner (négatives,neutres et positives). Nous avons analysé les différents changements d’activation (avant et après médication) essentiellement pour les valences extrêmes des stimuli (positives et négatives), ensuite nous avons regardé l’effet du type d’instruction sur ces changements. L’échantillon comprenait 13 patients atteints de schizophrénie et 15 témoins sains. Nous avons également effectué une évaluation clinique des symptômes dépressifs, positifs et négatifs de la maladie ainsi que des mesures biochimiques et de poids avant et après 16 semaines de médication. Malgré l’absence de changement significatif sur les mesures cliniques (PANSS et Dépression) avant et après une moyenne de 14.3 semaines de médication à la ziprasidone, plusieurs régions préfrontales (CCA, COF, CPDL) ont sensiblement accru leur réponse aux stimuli positifs par rapport aux stimuli négatifs. En outre, dans les régions habituellement impliquées dans le contrôle cognitif (CCA et CPFDL), cette tendance s'est accentuée lorsque les patients ont été invités à ne sélectionner que les stimuli négatifs (effet du type d’instruction). Nous avons également trouvé plusieurs similitudes dans le fonctionnement préfrontal (à la fois dans le volume et la force d'activation) entre les contrôles sains et les patients après médication en tenant compte du type d’instruction plus que de la valence émotionnelle des images. Pour conclure, les résultats de la présente étude suggèrent que le traitement antipsychotique avec la ziprasidone améliore le fonctionnement cognitif lié au traitement de l'information émotionnelle dans le cortex préfrontal chez les patients souffrant de schizophrénie. Étant donné le mécanisme d'action neuro-pharmacologique de la ziprasidone (plus d'affinité pour la sérotonine que pour les récepteurs de la dopamine dans le cortex préfrontal), nous pensons que nos résultats démontrent que le contrôle cognitif et la régulation des réactions face à des stimuli émotionnellement chargés dans la schizophrénie sont liés à une plus forte concentration de dopamine dans les voies préfrontales.
Resumo:
La progression d’un individu au travers d’un environnement diversifié dépend des informations visuelles qui lui permettent d’évaluer la taille, la forme ou même la distance et le temps de contact avec les obstacles dans son chemin. Il peut ainsi planifier en avance les modifications nécessaires de son patron locomoteur afin d’éviter ou enjamber ces entraves. Ce concept est aussi applicable lorsque le sujet doit atteindre une cible, comme un prédateur tentant d’attraper sa proie en pleine course. Les structures neurales impliquées dans la genèse des modifications volontaires de mouvements locomoteurs ont été largement étudiées, mais relativement peu d’information est présentement disponible sur les processus intégrant l’information visuelle afin de planifier ces mouvements. De nombreux travaux chez le primate suggèrent que le cortex pariétal postérieur (CPP) semble jouer un rôle important dans la préparation et l’exécution de mouvements d’atteinte visuellement guidés. Dans cette thèse, nous avons investigué la proposition que le CPP participe similairement dans la planification et le contrôle de la locomotion sous guidage visuel chez le chat. Dans notre première étude, nous avons examiné l’étendue des connexions cortico-corticales entre le CPP et les aires motrices plus frontales, particulièrement le cortex moteur, à l’aide d’injections de traceurs fluorescents rétrogrades. Nous avons cartographié la surface du cortex moteur de chats anesthésiés afin d’identifier les représentations somatotopiques distales et proximales du membre antérieur dans la partie rostrale du cortex moteur, la représentation du membre antérieur située dans la partie caudale de l’aire motrice, et enfin la représentation du membre postérieur. L’injection de différents traceurs rétrogrades dans deux régions motrices sélectionnées par chat nous a permis de visualiser la densité des projections divergentes et convergentes pariétales, dirigées vers ces sites moteurs. Notre analyse a révélé une organisation topographique distincte de connexions du CPP avec toutes les régions motrices identifiées. En particulier, nous avons noté que la représentation caudale du membre antérieur reçoit majoritairement des projections du côté rostral du sillon pariétal, tandis que la partie caudale du CPP projette fortement vers la représentation rostrale du membre antérieur. Cette dernière observation est particulièrement intéressante, parce que le côté caudal du sillon pariétal reçoit de nombreux inputs visuels et sa cible principale, la région motrice rostrale, est bien connue pour être impliquée dans les fonctions motrices volontaires. Ainsi, cette étude anatomique suggère que le CPP, au travers de connexions étendues avec les différentes régions somatotopiques du cortex moteur, pourrait participer à l’élaboration d’un substrat neural idéal pour des processus tels que la coordination inter-membre, intra-membre et aussi la modulation de mouvements volontaires sous guidage visuel. Notre deuxième étude a testé l’hypothèse que le CPP participe dans la modulation et la planification de la locomotion visuellement guidée chez le chat. En nous référant à la cartographie corticale obtenue dans nos travaux anatomiques, nous avons enregistré l’activité de neurones pariétaux, situés dans les portions des aires 5a et 5b qui ont de fortes connexions avec les régions motrices impliquées dans les mouvements de la patte antérieure. Ces enregistrements ont été effectués pendant une tâche de locomotion qui requiert l’enjambement d’obstacles de différentes tailles. En dissociant la vitesse des obstacles de celle du tapis sur lequel le chat marche, notre protocole expérimental nous a aussi permit de mettre plus d’emphase sur l’importance de l’information visuelle et de la séparer de l’influx proprioceptif généré pendant la locomotion. Nos enregistrements ont révélé deux groupes de cellules pariétales activées en relation avec l’enjambement de l’obstacle: une population, principalement située dans l’aire 5a, qui décharge seulement pendant le passage du membre au dessus del’entrave (cellules spécifiques au mouvement) et une autre, surtout localisée dans l’aire 5b, qui est activée au moins un cycle de marche avant l’enjambement (cellules anticipatrices). De plus, nous avons observé que l’activité de ces groupes neuronaux, particulièrement les cellules anticipatrices, était amplifiée lorsque la vitesse des obstacles était dissociée de celle du tapis roulant, démontrant l’importance grandissante de la vision lorsque la tâche devient plus difficile. Enfin, un grand nombre des cellules activées spécifiquement pendant l’enjambement démontraient une corrélation soutenue de leur activité avec le membre controlatéral, même s’il ne menait pas dans le mouvement (cellules unilatérales). Inversement, nous avons noté que la majorité des cellules anticipatrices avaient plutôt tendance à maintenir leur décharge en phase avec l’activité musculaire du premier membre à enjamber l’obstacle, indépendamment de sa position par rapport au site d’enregistrement (cellules bilatérales). Nous suggérons que cette disparité additionnelle démontre une fonction diversifiée de l’activité du CPP. Par exemple, les cellules unilatérales pourraient moduler le mouvement du membre controlatéral au-dessus de l’obstacle, qu’il mène ou suive dans l’ordre d’enjambement, tandis que les neurones bilatéraux sembleraient plutôt spécifier le type de mouvement volontaire requis pour éviter l’entrave. Ensembles, nos observations indiquent que le CPP a le potentiel de moduler l’activité des centres moteurs au travers de réseaux corticaux étendus et contribue à différents aspects de la locomotion sous guidage visuel, notamment l’initiation et l’ajustement de mouvements volontaires des membres antérieurs, mais aussi la planification de ces actions afin d’adapter la progression de l’individu au travers d’un environnement complexe.
Resumo:
Les systèmes cholinergique et dopaminergique jouent un rôle prépondérant dans les fonctions cognitives. Ce rôle est exercé principalement grâce à leur action modulatrice de l’activité des neurones pyramidaux du cortex préfrontal. L’interaction pharmacologique entre ces systèmes est bien documentée mais les études de leurs interactions neuroanatomiques sont rares, étant donné qu’ils sont impliqués dans une transmission diffuse plutôt que synaptique. Ce travail de thèse visait à développer une expertise pour analyser ce type de transmission diffuse en microscopie confocale. Nous avons étudié les relations de microproximité entre ces différents systèmes dans le cortex préfrontal médian (mPFC) de rats et souris. En particulier, la densité des varicosités axonales en passant a été quantifiée dans les segments des fibres cholinergiques et dopaminergiques à une distance mutuelle de moins de 3 µm ou à moins de 3 µm des somas de cellules pyramidales. Cette microproximité était considérée comme une zone d’interaction probable entre les éléments neuronaux. La quantification était effectuée après triple-marquage par immunofluorescence et acquisition des images de 1 µm par microscopie confocale. Afin d’étudier la plasticité de ces relations de microproximité, cette analyse a été effectuée dans des conditions témoins, après une activation du mPFC et dans un modèle de schizophrénie par déplétion des neurones cholinergiques du noyau accumbens. Les résultats démontrent que 1. Les fibres cholinergiques interagissent avec des fibres dopaminergiques et ce sur les mêmes neurones pyramidaux de la couche V du mPFC. Ce résultat suggère différents apports des systèmes cholinergique et dopaminergique dans l’intégration effectuée par une même cellule pyramidale. 2. La densité des varicosités en passant cholinergiques et dopaminergiques sur des segments de fibre en microproximité réciproque est plus élevée comparé aux segments plus distants les uns des autres. Ce résultat suggère un enrichissement du nombre de varicosités axonales dans les zones d’interaction. 3. La densité des varicosités en passant sur des segments de fibre cholinergique en microproximité de cellules pyramidales, immunoúactives pour c-Fos après une stimulation visuelle et une stimulation électrique des noyaux cholinergiques projetant au mPFC est plus élevée que la densité des varicosités de segments en microproximité de cellules pyramidales non-activées. Ce résultat suggère un enrichissement des varicosités axonales dépendant de l’activité neuronale locale au niveau de la zone d'interaction avec d'autres éléments neuronaux. 4. La densité des varicosités en passant des fibres dopaminergiques a été significativement diminuée dans le mPFC de rats ayant subi une déplétion cholinergique dans le noyau accumbens, comparée aux témoins. Ces résultats supportent des interrelations entre la plasticité structurelle des varicosités dopaminergiques et le fonctionnement cortical. L’ensemble des donneès démontre une plasticité de la densité locale des varicosités axonales en fonction de l’activité neuronale locale. Cet enrichissement activité-dépendant contribue vraisemblablement au maintien d’une interaction neurochimique entre deux éléments neuronaux.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
De récents travaux ont mis en évidence que des dysfonctionnements dans l’expression de gènes impliqués dans la plasticité synaptique contribuent aux déclins cognitifs qu’on observe chez les gens âgés et à la progression de la maladie d’Alzheimer. Notre étude avait comme objectif d’étudier le profil d’expression d’ARNm spécifiques impliqués dans la plasticité synaptique chez des rats jeunes et âgés et chez des souris transgéniques 3xTg et WT. Des expériences en qRT-PCR ont été effectuées dans des extraits de cortex et d’hippocampe de rats jeunes et âgés et de souris 3xTg et WT, respectivement. Les résultats ont démontré une augmentation significative de l’expression d’ARNm MAP1B, Stau2, BDNF, CREB et AGO2 principalement dans l’hippocampe (régions CA1-CA3) des souris 3xTg comparé aux souris WT. Une diminution significative a également été observée pour l’ARNm αCaMKII dans le cortex des souris 3xTg comparé aux souris WT. Contrairement à ces observations, aucun changement n’a été observé pour l’expression de gènes impliqués dans la plasticité synaptique chez les rats âgés comparé aux rats jeunes. Ces résultats démontrent qu’un dysfonctionnement existe réellement au début de la maladie d’Alzheimer dans l’expression de gènes spécifiques impliqués dans la plasticité synaptique et contribue potentiellement à la progression de la maladie en engendrant un déséquilibre entre la LTP et la LTD. De plus, les différences d’expressions sont particulièrement observées dans l’hippocampe (régions CA1-CA3) ce qui est consistant avec les études sur la progression de la maladie d’Alzheimer puisqu’il est connu que la région CA1 de l’hippocampe est la plus vulnérable à l’apparition de la maladie. Ces résultats permettent une meilleure compréhension des événements moléculaires qui deviennent dérégulés à l’apparition de la maladie d’Alzheimer.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les deux fonctions principales de la main sont la manipulation d’objet et l’exploration tactile. La détection du glissement, rapportée par les mécanorécepteurs de la peau glabre, est essentielle pour l’exécution de ces deux fonctions. Durant la manipulation d’objet, la détection rapide du micro-glissement (incipient slip) amène la main à augmenter la force de pince pour éviter que l’objet ne tombe. À l’opposé, le glissement est un aspect essentiel à l’exploration tactile puisqu’il favorise une plus grande acuité tactile. Pour ces deux actions, les forces normale et tangentielle exercées sur la peau permettent de décrire le glissement mais également ce qui arrive juste avant qu’il y ait glissement. Toutefois, on ignore comment ces forces contrôlées par le sujet pourraient être encodées au niveau cortical. C’est pourquoi nous avons enregistré l’activité unitaire des neurones du cortex somatosensoriel primaire (S1) durant l’exécution de deux tâches haptiques chez les primates. Dans la première tâche, deux singes devaient saisir une pastille de métal fixe et y exercer des forces de cisaillement sans glissement dans une de quatre directions orthogonales. Des 144 neurones enregistrés, 111 (77%) étaient modulés à la direction de la force de cisaillement. L’ensemble de ces vecteurs préférés s’étendait dans toutes les directions avec un arc variant de 50° à 170°. Plus de 21 de ces neurones (19%) étaient également modulés à l’intensité de la force de cisaillement. Bien que 66 neurones (59%) montraient clairement une réponse à adaptation lente et 45 autres (41%) une réponse à adaptation rapide, cette classification ne semblait pas expliquer la modulation à l’intensité et à la direction de la force de cisaillement. Ces résultats montrent que les neurones de S1 encodent simultanément la direction et l’intensité des forces même en l’absence de glissement. Dans la seconde tâche, deux singes ont parcouru différentes surfaces avec le bout des doigts à la recherche d’une cible tactile, sans feedback visuel. Durant l’exploration, les singes, comme les humains, contrôlaient les forces et la vitesse de leurs doigts dans une plage de valeurs réduite. Les surfaces à haut coefficient de friction offraient une plus grande résistance tangentielle à la peau et amenaient les singes à alléger la force de contact, normale à la peau. Par conséquent, la somme scalaire des composantes normale et tangentielle demeurait constante entre les surfaces. Ces observations démontrent que les singes contrôlent les forces normale et tangentielle qu’ils appliquent durant l’exploration tactile. Celles-ci sont également ajustées selon les propriétés de surfaces telles que la texture et la friction. Des 230 neurones enregistrés durant la tâche d’exploration tactile, 96 (42%) ont montré une fréquence de décharge instantanée reliée aux forces exercées par les doigts sur la surface. De ces neurones, 52 (54%) étaient modulés avec la force normale ou la force tangentielle bien que l’autre composante orthogonale avait peu ou pas d’influence sur la fréquence de décharge. Une autre sous-population de 44 (46%) neurones répondait au ratio entre la force normale et la force tangentielle indépendamment de l’intensité. Plus précisément, 29 (30%) neurones augmentaient et 15 (16%) autres diminuaient leur fréquence de décharge en relation avec ce ratio. Par ailleurs, environ la moitié de tous les neurones (112) étaient significativement modulés à la direction de la force tangentielle. De ces neurones, 59 (53%) répondaient à la fois à la direction et à l’intensité des forces. L’exploration de trois ou quatre différentes surfaces a permis d’évaluer l’impact du coefficient de friction sur la modulation de 102 neurones de S1. En fait, 17 (17%) neurones ont montré une augmentation de leur fréquence de décharge avec l’augmentation du coefficient de friction alors que 8 (8%) autres ont montré le comportement inverse. Par contre, 37 (36%) neurones présentaient une décharge maximale sur une surface en particulier, sans relation linéaire avec le coefficient de friction des surfaces. La classification d’adaptation rapide ou lente des neurones de S1 n’a pu être mise en relation avec la modulation aux forces et à la friction. Ces résultats montrent que la fréquence de décharge des neurones de S1 encode l’intensité des forces normale et tangentielle, le ratio entre les deux composantes et la direction du mouvement. Ces résultats montrent que le comportement d’une importante sous-population des neurones de S1 est déterminé par les forces normale et tangentielle sur la peau. La modulation aux forces présentée ici fait le pont entre les travaux évaluant les propriétés de surfaces telles que la rugosité et les études touchant à la manipulation d’objets. Ce système de référence s’applique en présence ou en absence de glissement entre la peau et la surface. Nos résultats quant à la modulation des neurones à adaptation rapide ou lente nous amènent à suggérer que cette classification découle de la manière que la peau est stimulée. Nous discuterons aussi de la possibilité que l’activité des neurones de S1 puisse inclure une composante motrice durant ces tâches sensorimotrices. Finalement, un nouveau cadre de référence tridimensionnel sera proposé pour décrire et rassembler, dans un même continuum, les différentes modulations aux forces normale et tangentielle observées dans S1 durant l’exploration tactile.