39 resultados para multivariate classification
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
Affiliation: Centre Robert-Cedergren de l'Université de Montréal en bio-informatique et génomique & Département de biochimie, Université de Montréal
Resumo:
Les employés d’un organisme utilisent souvent un schéma de classification personnel pour organiser les documents électroniques qui sont sous leur contrôle direct, ce qui suggère la difficulté pour d’autres employés de repérer ces documents et la perte possible de documentation pour l’organisme. Aucune étude empirique n’a été menée à ce jour afin de vérifier dans quelle mesure les schémas de classification personnels permettent, ou même facilitent, le repérage des documents électroniques par des tiers, dans le cadre d’un travail collaboratif par exemple, ou lorsqu’il s’agit de reconstituer un dossier. Le premier objectif de notre recherche était de décrire les caractéristiques de schémas de classification personnels utilisés pour organiser et classer des documents administratifs électroniques. Le deuxième objectif consistait à vérifier, dans un environnement contrôlé, les différences sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction du schéma de classification utilisé. Nous voulions vérifier s’il était possible de repérer un document avec la même efficacité, quel que soit le schéma de classification utilisé pour ce faire. Une collecte de données en deux étapes fut réalisée pour atteindre ces objectifs. Nous avons d’abord identifié les caractéristiques structurelles, logiques et sémantiques de 21 schémas de classification utilisés par des employés de l’Université de Montréal pour organiser et classer les documents électroniques qui sont sous leur contrôle direct. Par la suite, nous avons comparé, à partir d'une expérimentation contrôlée, la capacité d’un groupe de 70 répondants à repérer des documents électroniques à l’aide de cinq schémas de classification ayant des caractéristiques structurelles, logiques et sémantiques variées. Trois variables ont été utilisées pour mesurer l’efficacité du repérage : la proportion de documents repérés, le temps moyen requis (en secondes) pour repérer les documents et la proportion de documents repérés dès le premier essai. Les résultats révèlent plusieurs caractéristiques structurelles, logiques et sémantiques communes à une majorité de schémas de classification personnels : macro-structure étendue, structure peu profonde, complexe et déséquilibrée, regroupement par thème, ordre alphabétique des classes, etc. Les résultats des tests d’analyse de la variance révèlent des différences significatives sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction des caractéristiques structurelles, logiques et sémantiques du schéma de classification utilisé. Un schéma de classification caractérisé par une macro-structure peu étendue et une logique basée partiellement sur une division par classes d’activités augmente la probabilité de repérer plus rapidement les documents. Au plan sémantique, une dénomination explicite des classes (par exemple, par utilisation de définitions ou en évitant acronymes et abréviations) augmente la probabilité de succès au repérage. Enfin, un schéma de classification caractérisé par une macro-structure peu étendue, une logique basée partiellement sur une division par classes d’activités et une sémantique qui utilise peu d’abréviations augmente la probabilité de repérer les documents dès le premier essai.
Multivariate Cointegration in the Presence of Structural Breaks: the Case of Money Demand in Mexico.
Resumo:
Un résumé en anglais est également disponible.
Resumo:
La récupération optimale des amplitudes articulaires (AAs) et de la force musculaire est un objectif crucial de la réadaptation fonctionnelle intensive (RFI) à la suite d’une lésion médullaire (LM). Le but de la présente étude était de documenter les changements d’AAs des membres supérieurs durant la RFI chez des individus (n = 197) ayant subi une LM et d’établir le lien avec l’autonomie fonctionnelle. Les données (AA, force musculaire, spasticité, déficiences secondaires, autonomie fonctionnelle) ont été collectées à l’admission et au congé de la RFI. Des analyses descriptives, des tests d’association entre les changements d’AAs et des variables indépendantes (douleur, spasticité, déficiences secondaires, force) et des analyses multivariées ont été utilisées. Les individus ayant une paraplégie présentent peu de déficit d’AAs à l’épaule comparés à ceux ayant une tétraplégie. Parmi ces derniers, une majorité présente des AAs sous les valeurs de normalité en fin de RFI. Le groupe D, établi selon l’évaluation de l’American Spinal Injury Association (ASIA D) présente des pertes d’AAs plus importante qu’attendue. La douleur au niveau articulaire est un facteur influençant les changements d’AAs, particulièrement dans ce groupe. La force musculaire chez les personnes ayant une tétraplégie sévère (ASIA ABC) est plus faible que celle du groupe ayant une lésion moins sévère (ASIA D). Généralement, le gain de force corrèle avec le gain d’AA. La force musculaire, les AAs et le nombre de déficiences secondaires sont les principaux éléments influençant l’autonomie fonctionnelle. En conclusion, la perte d’AA est plus importante à l’articulation de l’épaule et, pour plusieurs individus, malgré un gain significatif, les AAs n’atteignent pas les valeurs de référence au congé de la RFI. La force musculaire et certaines déficiences secondaires sont des éléments à considérer pour expliquer les pertes d’AAs et d’autonomie fonctionnelle. Les études futures devront clarifier certains aspects dont l’atteinte de la rotation médiale qui semble montrer un patron différent de récupération en comparaison des autres mouvements de l’épaule. De plus, les études devront montrer si ces changements et résultats sont maintenus après le congé de la RFI.
Resumo:
In this paper I criticize Alison Jaggar’s descriptions of feminist political theories. I propose an alternative classification of feminist theories that I think more accurately reflects the multiplication of feminist theories and philosophies. There are two main categories, “street theory” and academic theories, each with two sub-divisions, political spectrum and “differences” under street theory, and directly and indirectly political analyses under academic theories. My view explains why there are no radical feminists outside of North America and why there are so few socialist feminists inside North America. I argue, controversially, that radical feminism is a radical version of liberalism. I argue that “difference” feminist theories – theory by and about feminists of colour, queer feminists, feminists with disabilities and so on – belong in a separate sub-category of street theory, because they’ve had profound effects on feminist activism not tracked by traditional left-to-right classifications. Finally, I argue that, while academic feminist theories such as feminist existentialism or feminist sociological theory are generally unconnected to movement activism, they provide important feminist insights that may become importanby showing the advantages of my classification over Jaggar’s views.