31 resultados para Enterohemorrhagic Escherichia coli
Resumo:
Les Escherichia coli entérohémorragiques (EHEC) représentent un problème majeur de santé publique dans les pays développés. Les EHEC sont régulièrement responsables de toxi-infections alimentaires graves chez l’humain et causent des colites hémorragiques et le symptôme hémolytique et urémique, mortel chez les enfants en bas âge. Les EHEC les plus virulents appartiennent au sérotype O157:H7 et le bovin constitue leur réservoir naturel. À ce jour il n’existe aucun traitement pour éviter l’apparition des symptômes liés à une infection à EHEC. Par conséquent, il est important d’augmenter nos connaissances sur les mécanismes employés par le pathogène pour réguler sa virulence et coloniser efficacement la niche intestinale. Dans un premier temps, l’adaptation de la souche EHEC O157:H7 EDL933 à l’activité métabolique du microbiote intestinal a été étudiée au niveau transcriptionnel. Pour se faire, EDL933 a été cultivée dans les contenus caecaux de rats axéniques (milieu GFC) et dans ceux provenant de rats colonisés par le microbiote intestinal humain (milieu HMC). Le HMC est un milieu cécal conditionné in vivo par le microbiote. Dans le HMC par rapport au GFC, EDL933 change drastiquement de profile métabolique en réponse à l’activité du microbiote et cela se traduit par une diminution de l’expression des voies de la glycolyse et une activation des voies de l’anaplérose (voies métaboliques dont le rôle est d’approvisionner le cycle TCA en intermédiaires métaboliques). Ces résultats, couplés avec une analyse métabolomique ciblée sur plusieurs composés, ont révélé la carence en nutriments rencontrée par le pathogène dans le HMC et les stratégies métaboliques utilisées pour s’adapter au microbiote intestinal. De plus, l’expression des gènes de virulence incluant les gènes du locus d’effacement des entérocytes (LEE) codant pour le système de sécrétion de type III sont réprimés dans le HMC par rapport au GFC indiquant la capacité du microbiote intestinal à réprimer la virulence des EHEC. L’influence de plusieurs composés intestinaux présents dans les contenus caecaux de rats sur l’expression des gènes de virulence d’EDL933 a ensuite été étudiée. Ces résultats ont démontré que deux composés, l’acide N-acétylneuraminique (Neu5Ac) et le N-acétylglucosamine (GlcNAc) répriment l’expression des gènes du LEE. La répression induite par ces composés s’effectue via NagC, le senseur du GlcNAc-6-P intracellulaire et le régulateur du catabolisme du GlcNAc et du galactose chez E. coli. NagC est un régulateur transcriptionnel inactivé en présence de GlcNAc-6-P qui dérive du catabolisme du Neu5Ac et du transport GlcNAc. Ce travail nous a permis d’identifier NagC comme un activateur des gènes du LEE et de mettre à jour un nouveau mécanisme qui permet la synchronisation de la virulence avec le métabolisme chez les EHEC O157:H7. La concentration du Neu5Ac et du GlcNAc est augmentée in vivo chez le rat par le symbiote humain Bacteroides thetaiotaomicron, indiquant la capacité de certaines espèces du microbiote intestinal à relâcher les composés répresseurs de la virulence des pathogènes. Ce travail a permis l’identification des adaptations métaboliques des EHEC O157:H7 en réponse au microbiote intestinal ainsi que la découverte d’un nouveau mécanisme de régulation de la virulence en réponse au métabolisme. Ces données peuvent contribuer à l’élaboration de nouvelles approches visant à limiter les infections à EHEC.
Resumo:
Des variations importantes du surenroulement de l’ADN peuvent être générées durant la phase d’élongation de la transcription selon le modèle du « twin supercoiled domain ». Selon ce modèle, le déplacement du complexe de transcription génère du surenroulement positif à l’avant, et du surenroulement négatif à l’arrière de l’ARN polymérase. Le rôle essentiel de la topoisomérase I chez Escherichia coli est de prévenir l’accumulation de ce surenroulement négatif générée durant la transcription. En absence de topoisomérase I, l’accumulation de ce surenroulement négatif favorise la formation de R-loops qui ont pour conséquence d’inhiber la croissance bactérienne. Les R-loops sont des hybrides ARN-ADN qui se forment entre l’ARN nouvellement synthétisé et le simple brin d’ADN complémentaire. Dans les cellules déficientes en topoisomérase I, des mutations compensatoires s’accumulent dans les gènes qui codent pour la gyrase, réduisant le niveau de surenroulement négatif du chromosome et favorisant la croissance. Une des ces mutations est une gyrase thermosensible qui s’exprime à 37 °C. La RNase HI, une enzyme qui dégrade la partie ARN d’un R-loop, peut aussi restaurer la croissance en absence de topoisomérase I lorsqu’elle est produite en très grande quantité par rapport à sa concentration physiologique. En présence de topoisomérase I, des R-loops peuvent aussi se former lorsque la RNase HI est inactive. Dans ces souches mutantes, les R-loops induisent la réponse SOS et la réplication constitutive de l’ADN (cSDR). Dans notre étude, nous montrons comment les R-loops formés en absence de topoisomérase I ou RNase HI peuvent affecter négativement la croissance des cellules. Lorsque la topoisomérase I est inactivée, l’accumulation d’hypersurenroulement négatif conduit à la formation de nombreux R-loops, ce qui déclenche la dégradation de l’ARN synthétisé. Issus de la dégradation de l’ARNm de pleine longueur, des ARNm incomplets et traductibles s’accumulent et causent l’inhibition de la synthèse protéique et de la croissance. Le processus par lequel l’ARN est dégradé n’est pas encore complètement élucidé, mais nos résultats soutiennent fortement que la RNase HI présente en concentration physiologique est responsable de ce phénotype. Chose importante, la RNase E qui est l’endoribonuclease majeure de la cellule n’est pas impliquée dans ce processus, et la dégradation de l’ARN survient avant son action. Nous montrons aussi qu’une corrélation parfaite existe entre la concentration de RNase HI, l’accumulation d’hypersurenroulement négatif et l’inhibition de la croissance bactérienne. Lorsque la RNase HI est en excès, l’accumulation de surenroulement négatif est inhibée et la croissance n’est pas affectée. L’inverse se produit Lorsque la RNase HI est en concentration physiologique. En limitant l’accumulation d’hypersurenroulement négatif, la surproduction de la RNase HI prévient alors la dégradation de l’ARN et permet la croissance. Quand la RNase HI est inactivée en présence de topoisomérase I, les R-loops réduisent le niveau d’expression de nombreux gènes, incluant des gènes de résistance aux stress comme rpoH et grpE. Cette inhibition de l’expression génique n’est pas accompagnée de la dégradation de l’ARN contrairement à ce qui se produit en absence de topoisomérase I. Dans le mutant déficient en RNase HI, la diminution de l’expression génique réduit la concentration cellulaire de différentes protéines, ce qui altère négativement le taux de croissance et affecte dramatiquement la survie des cellules exposées aux stress de hautes températures et oxydatifs. Une inactivation de RecA, le facteur essentiel qui déclenche la réponse SOS et le cSDR, ne restaure pas l’expression génique. Ceci démontre que la réponse SOS et le cSDR ne sont pas impliqués dans l’inhibition de l’expression génique en absence de RNase HI. La croissance bactérienne qui est inhibée en absence de topoisomérase I, reprend lorsque l’excès de surenroulement négatif est éliminé. En absence de RNase HI et de topoisomérase I, le surenroulement négatif est très relaxé. Il semble que la réponse cellulaire suite à la formation de R-loops, soit la relaxation du surenroulement négatif. Selon le même principe, des mutations compensatoires dans la gyrase apparaissent en absence de topoisomérase I et réduisent l’accumulation de surenroulement négatif. Ceci supporte fortement l’idée que le surenroulement négatif joue un rôle primordial dans la formation de R-loop. La régulation du surenroulement négatif de l’ADN est donc une tâche essentielle pour la cellule. Elle favorise notamment l’expression génique optimale durant la croissance et l’exposition aux stress, en limitant la formation de R-loops. La topoisomérase I et la RNase HI jouent un rôle important et complémentaire dans ce processus.
Resumo:
Les diarrhées post-sevrages causées par des infections à Escherichia coli entérotoxinogène positif pour le fimbriae F4 (ETEC F4), entraînent des pertes économiques importantes chez les producteurs de porc. Depuis quelques années, l’utilisation de probiotiques, comme additif alimentaire pour prévenir ce type d’infection entérique et réduire les traitements aux antimicrobiens, suscite un intérêt grandissant en production porcine. Le but du présent travail est de déterminer l’influence de l’administration des probiotiques Pediococcus acidilactici (PA) et Saccharomyces cerevisiae boulardii (SCB) sur la colonisation et l’attachement des ETEC F4, l’accumulation de fluide intestinal et l’expression de cytokines dans l’iléon de porcelets sevrés. Dès la naissance, différentes portées de porcelets ont été affectées aux traitements suivants : PA, SCB, PA + SCB, témoin et témoin avec antibiotiques (ATB). Une dose quotidienne de probiotiques (1 × 109 UFC) a été administrée aux porcelets des groupes probiotiques durant la lactation et après le sevrage. Sept jours après le sevrage, à 28 jours d’âge, des porcelets positifs pour le récepteur intestinal spécifique pour F4 ont été infectés oralement avec une souche ETEC F4. Les porcelets ont été euthanasiés 24 heures après l’infection (jour 29) et différents échantillons intestinaux ont été prélevés. Chez les porcelets recevant des probiotiques, l’attachement des ETEC F4 à la muqueuse iléale était significativement diminué chez les groupes PA ou SCB en comparaison avec le groupe ATB. Finalement, l’expression de cytokines intestinales était plus élevée chez les porcs du groupe PA + SCB en comparaison avec les porcelets témoins. En conclusion, les résultats de cette étude suggèrent que l’administration de probiotiques pourrait être une alternative pour limiter les infections à ETEC F4 chez le porc.
Resumo:
Les E. coli entérotoxinogènes (ETEC) sont souvent la cause de diarrhée post-sevrage chez le porc. Deux types d’entérotoxines sont retrouvées chez les ETEC, soit les thermolabiles, comme la toxine LT, et les thermostables, comme EAST-1, STa et STb. Cette dernière est composée de 48 acides aminés et est impliquée dans la pathologie causée par les ETEC. Pour la première fois un variant de la toxine STb fut découvert dans une étude. Nous avons alors émis l’hypothèse qu’il y a présence de variants dans la population de souches ETEC du Québec. Dans les 100 souches STb+ analysées, 23 possédaient le gène de la toxine avec une variation dans la séquence génétique : l’asparagine était présente en position 12 remplaçant ainsi l’histidine. Une corrélation entre la présence du variant et la présence de facteurs de virulence retrouvés dans ces 100 souches ETEC étudiées a été effectuée. Ce variant semble fortement associé à la toxine STa puisque toutes les souches variantes ont hybridé avec le gène codant pour cette dernière. Étant donné sa présence répandue dans la population de souches ETEC du Québec, nous avons de plus émis l’hypothèse que ce variant a des caractéristiques biologiques altérées par rapport à la toxine sauvage. L’analyse par dichroïsme circulaire a montré que le variant et la toxine sauvage ont une structure secondaire ainsi qu’une stabilité similaires. Par la suite, l’attachement au récepteur de la toxine, le sulfatide, a été étudié par résonnance plasmonique de surface (biacore). Le variant a une affinité au sulfatide légèrement réduite comparativement à la toxine sauvage. Puisque l’internalisation de la toxine fut observée dans une étude précédente et qu’elle semble liée à la toxicité, nous avons comparé l’internalisation du variant et de la toxine sauvage à l’intérieur des cellules IPEC-J2. L’internalisation du variant dans les cellules est légèrement supérieure à l’internalisation de la toxine sauvage. Ces résultats suggèrent que le variant est biochimiquement et structurellement comparable à la toxine sauvage.
Resumo:
Les souches d’Escherichia coli pathogènes aviaires (APEC) sont responsables d’infections respiratoires et de septicémies chez la volaille. Le régulon Pho est contrôlé conjointement par le système à deux composantes PhoBR et par le système de transport spécifique du phosphate (Pst). Afin de déterminer l’implication de PhoBR et du système Pst dans la pathogenèse de la souche APEC O78 χ7122, différentes souche mutantes phoBR et pst ont été testées pour divers traits de virulence in vivo et in vitro. Les mutations menant à l’activation constitutive du régulon Pho rendaient les souches plus sensibles au peroxyde d’hydrogène et au sérum de lapin comparativement à la souche sauvage. De plus, l’expression des fimbriae de type 1 était affectée chez ces souches. L’ensemble des mutants Pho-constitutifs étaient aussi significativement moins virulents que la souche sauvage dans un modèle de coinfection de poulet, incluant les souches avec un système Pst fonctionnel. De plus, l’inactivation du régulateur PhoB chez un mutant Pst restaure la virulence. Par ailleurs, l’inactivation de PhoB n’affecte pas la virulence de la souche χ7122 dans notre modèle. De manière intéressante, le degré d’atténuation des souches mutantes corrèle directement avec le niveau d’activation du régulon Pho. Globalement, les résultats indiquent que l’activation du régulon Pho plutôt que le transport du phosphate via le système Pst joue un rôle majeur dans l’atténuation des APEC.
Resumo:
Les R-loops générés durant la transcription sont impliqués dans de nombreuse fonctions incluant la réplication, la recombinaison et l’expression génique tant chez les procaryotes que chez les eucaryotes. Plusieurs études ont montré qu’un excès de supertours négatifs et des séquences riches en bases G induisent la formation de R-loops. Jusqu’à maintenant, nos résultats nous ont permis d’établir un lien direct entre les topoisomérases, le niveau de surenroulement et la formation de R-loops. Cependant, le rôle physiologique des R-loops est encore largement inconnu. Dans le premier article, une étude détaillée du double mutant topA rnhA a montré qu’une déplétion de RNase HI induit une réponse cellulaire qui empêche la gyrase d’introduire des supertours. Il s’agit ici, de la plus forte évidence supportant les rôles majeurs de la RNase HI dans la régulation du surenroulement de l’ADN. Nos résultats ont également montré que les R-loops pouvaient inhiber l’expression génique. Cependant, les mécanismes exacts sont encore mal connus. L’accumulation d’ARNs courts au détriment d’ARNs pleine longueur peut être causée soit par des blocages durant l’élongation de la transcription soit par la dégradation des ARNs pleine longueur. Dans le deuxième article, nous montrons que l’hypersurenroulement négatif peut mener à la formation de R-loops non-spécifiques (indépendants de la séquence nucléotidique). La présence de ces derniers, engendre une dégradation massive des ARNs et ultimement à la formation de protéines tronquées. En conclusion, ces études montrent l’évidence d’un lien étroit entre la RNase HI, la formation des R-loops, la topologie de l’ADN et l’expression génique. De plus, elles attestent de la présence d’un nouvel inhibiteur de gyrase ou d’un mécanisme encore inconnu capable de réguler son activité. Cette surprenante découverte est élémentaire sachant que de nombreux antibiotiques ciblent la gyrase. Finalement, ces études pourront servir également de base à des recherches similaires chez les cellules eucaryotes.
Resumo:
Les topoisomérases I (topA) et III (topB) sont les deux topoisomérases (topos) de type IA d’Escherichia coli. La fonction principale de la topo I est la relaxation de l’excès de surenroulement négatif, tandis que peu d’information est disponible sur le rôle de la topo III. Les cellules pour lesquelles les deux topoisomérases de type IA sont manquantes souffrent d’une croissance difficile ainsi que de défauts de ségrégation sévères. Nous démontrons que ces problèmes sont majoritairement attribuables à des mutations dans la gyrase qui empêchent l’accumulation d’excès de surenroulement négatif chez les mutants sans topA. L’augmentation de l’activité de la gyrase réalisée par le remplacement de l’allèle gyrB(Ts) par le gène de type sauvage ou par l’exposition des souches gyrB(Ts) à une température permissive, permet la correction significative de la croissance et de la ségrégation des cellules topos de type IA. Nous démontrons également que les mutants topB sont hypersensibles à l’inhibition de la gyrase par la novobiocine. La réplication non-régulée en l’absence de topA et de rnhA (RNase HI) augmente la nécessité de l’activité de la topoisomérase III. De plus, en l’absence de topA et de rnhA, la surproduction de la topoisomérase III permet de réduire la dégradation importante d’ADN qui est observée en l’absence de recA (RecA). Nous proposons un rôle pour la topoisomérase III dans la ségrégation des chromosomes lorsque l’activité de la gyrase n’est pas optimale, par la réduction des collisions fourches de réplication s’observant particulièrement en l’absence de la topo I et de la RNase HI.
Resumo:
F1651, les pili Pap et l’antigène CS31A associé aux antigènes de surface K88 sont tout trois des membres de la famille de type P des facteurs d’adhérence jouant un rôle prépondérant lors de l’établissement d’une maladie causée par des souches Escherichia coli pathogènes, en particulier des souches d’E. coli pathogènes extra-intestinales (ExPEC, Extra-intestinal pathogenic E. coli). Leur expression est sous le contrôle d’un mécanisme de régulation transcriptionnel dépendant de l’état de méthylation de l’ADN, résultant dans l’existence de deux populations définies, l’une exprimant l’adhésine (population ON) et l’autre ne l’exprimant pas (population OFF). Malgré de fortes identités de séquences, ces trois systèmes diffèrent l’un de l’autre, principalement par le pourcentage de cellules ON rencontrées. Ainsi, quand CS31A est systématiquement orienté vers un état considéré comme OFF, F1651 présente une phase ON particulièrement élevée et Pap montre deux états OFF et ON bien distincts, selon le phénotype de départ. La protéine régulatrice sensible à la leucine (Lrp, Leucine-responsive regulatory protein) joue un rôle essentiel dans la réversibilité de ce phénomène épigénétique et il est supposé que les différences de séquences au niveau de la région régulatrice modifient la localisation à ces sites de fixation de Lrp; ce qui résulte, en final, aux différences de phase existant entre CS31A, F1651 et Pap.À l’aide de divers techniques parmi lesquelles l’utilisation de gènes rapporteurs, mutagénèses dirigées et d’analyse des interactions ADN-protéines in vitro, nous montrons dans ce présent projet que la phase OFF prédominante chez CS31A est principalement due à une faible interaction de Lrp avec la région distale de l’opéron clp, et que la présence d’un homologue du régulateur local PapI joue un rôle également clef dans la production de CS31A. Dans le cas de F1651, nous montrons dans cette étude que le taux élevé de cellules en phase ON est dû à une altération dans le maintien de Lrp sur les sites répresseurs 1-3. Ceci est dû à la présence de deux nucléotides spécifiques, situé de part et d’autre du site répresseur 1, qui défavorisent la fixation de Lrp sur ce site précis. Tout comme dans le cas de CS31A, la formation d’un complexe, activateur ou répresseur de la phase ON, dépend également de l’action de du régulatuer local FooI, qui favorise alors le déplacement de Lrp des sites répresseurs 1-3 vers les sites activateurs 4-6.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La toxine stable à la chaleur de type b (STb) est une des toxines produites par les souches Enterotoxigenic Escherichia coli (ETEC) impliquée dans le développement de la diarrhée. Une étude antérieure par Goncalves et al. (2009) a démontré que les cellules ayant internalisé la toxine STb démontraient une morphologie qui rappelle l’apoptose. Le changement du potentiel membranaire observé par Goncalves et al. (2009) nous a incité à vérifier la capacité de la toxine STb à induire l’apoptose des cellules HRT-18 et IEC-18 par la voie intrinsèque. Les cellules HRT-18 et IEC-18 ont été traitées avec de la toxine purifiée pour une durée de 24 heures puis ells ont été récoltées et examinées pour des caratéristiques de l’apoptose. L’activation des caspases-9 et -3, mais pas de la caspase-8, a été observée dans les deux lignées cellulaires à l’aide des substrats fluorescents spécifiques pour chaque caspase. L’ADN extrait des cellules HRT-18 et IEC-18 a révélé une fragmentation lorsque migré sur gel d’agarose. La condensation et la fragmentation des noyaux ont été observées en microscopie à fluorescence suite à une coloration de l’ADN au Hoechst 33342. Les indices apoptotiques des cellules HRT-18 et IEC-18 traitées avec des quantités croissantes de STb montrent une dose-réponse pour les deux lignées. L’activation de la caspase-9 est une indication que la voie intrinsèque de l’apoptose est activée dans les cellules HRT-18 et IEC-18. L’absence de l’activation de la caspase-8 démontre que la voie extrinsèque n’est pas impliquée dans la mort cellulaire médiée par STb.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal