78 resultados para Charrot, Jean-Marie (1...-1877)
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
Dans ce texte, nous analysons les développements récents de l’économétrie à la lumière de la théorie des tests statistiques. Nous revoyons d’abord quelques principes fondamentaux de philosophie des sciences et de théorie statistique, en mettant l’accent sur la parcimonie et la falsifiabilité comme critères d’évaluation des modèles, sur le rôle de la théorie des tests comme formalisation du principe de falsification de modèles probabilistes, ainsi que sur la justification logique des notions de base de la théorie des tests (tel le niveau d’un test). Nous montrons ensuite que certaines des méthodes statistiques et économétriques les plus utilisées sont fondamentalement inappropriées pour les problèmes et modèles considérés, tandis que de nombreuses hypothèses, pour lesquelles des procédures de test sont communément proposées, ne sont en fait pas du tout testables. De telles situations conduisent à des problèmes statistiques mal posés. Nous analysons quelques cas particuliers de tels problèmes : (1) la construction d’intervalles de confiance dans le cadre de modèles structurels qui posent des problèmes d’identification; (2) la construction de tests pour des hypothèses non paramétriques, incluant la construction de procédures robustes à l’hétéroscédasticité, à la non-normalité ou à la spécification dynamique. Nous indiquons que ces difficultés proviennent souvent de l’ambition d’affaiblir les conditions de régularité nécessaires à toute analyse statistique ainsi que d’une utilisation inappropriée de résultats de théorie distributionnelle asymptotique. Enfin, nous soulignons l’importance de formuler des hypothèses et modèles testables, et de proposer des techniques économétriques dont les propriétés sont démontrables dans les échantillons finis.
Resumo:
Ce Texte Presente Plusieurs Resultats Exacts Sur les Seconds Moments des Autocorrelations Echantillonnales, Pour des Series Gaussiennes Ou Non-Gaussiennes. Nous Donnons D'abord des Formules Generales Pour la Moyenne, la Variance et les Covariances des Autocorrelations Echantillonnales, Dans le Cas Ou les Variables de la Serie Sont Interchangeables. Nous Deduisons de Celles-Ci des Bornes Pour les Variances et les Covariances des Autocorrelations Echantillonnales. Ces Bornes Sont Utilisees Pour Obtenir des Limites Exactes Sur les Points Critiques Lorsqu'on Teste le Caractere Aleatoire D'une Serie Chronologique, Sans Qu'aucune Hypothese Soit Necessaire Sur la Forme de la Distribution Sous-Jacente. Nous Donnons des Formules Exactes et Explicites Pour les Variances et Covariances des Autocorrelations Dans le Cas Ou la Serie Est un Bruit Blanc Gaussien. Nous Montrons Que Ces Resultats Sont Aussi Valides Lorsque la Distribution de la Serie Est Spheriquement Symetrique. Nous Presentons les Resultats D'une Simulation Qui Indiquent Clairement Qu'on Approxime Beaucoup Mieux la Distribution des Autocorrelations Echantillonnales En Normalisant Celles-Ci Avec la Moyenne et la Variance Exactes et En Utilisant la Loi N(0,1) Asymptotique, Plutot Qu'en Employant les Seconds Moments Approximatifs Couramment En Usage. Nous Etudions Aussi les Variances et Covariances Exactes D'autocorrelations Basees Sur les Rangs des Observations.
Resumo:
Ce texte propose des méthodes d’inférence exactes (tests et régions de confiance) sur des modèles de régression linéaires avec erreurs autocorrélées suivant un processus autorégressif d’ordre deux [AR(2)], qui peut être non stationnaire. L’approche proposée est une généralisation de celle décrite dans Dufour (1990) pour un modèle de régression avec erreurs AR(1) et comporte trois étapes. Premièrement, on construit une région de confiance exacte pour le vecteur des coefficients du processus autorégressif (φ). Cette région est obtenue par inversion de tests d’indépendance des erreurs sur une forme transformée du modèle contre des alternatives de dépendance aux délais un et deux. Deuxièmement, en exploitant la dualité entre tests et régions de confiance (inversion de tests), on détermine une région de confiance conjointe pour le vecteur φ et un vecteur d’intérêt M de combinaisons linéaires des coefficients de régression du modèle. Troisièmement, par une méthode de projection, on obtient des intervalles de confiance «marginaux» ainsi que des tests à bornes exacts pour les composantes de M. Ces méthodes sont appliquées à des modèles du stock de monnaie (M2) et du niveau des prix (indice implicite du PNB) américains
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
We consider the following question: does market failure justify redistribution? We argue that the general answer to this question is no, in the sense that policies for correcting market failures do not aim at producing a "desirable" income distribution. This follows from the fact that, by construction, market failure is a deviation from "efficiency" that does not involve any notion of a desirable distribution of welfare (or income). However, there are special cases where a "corrective measure" involving redistribution can offset a market failure, so this can provide a form of efficiency- based justification for redistribution.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
Édition épuisée.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
Ce document est une version antérieure du document "Lire ou écrire une recherche utilisant des données qualitatives : une grille pour analyser et pour préparer une recherche ou une demande de subvention", juin 2015 : http://hdl.handle.net/1866/12178
Resumo:
Ce document est une version mise-à-jour du document "Lire la recherche utilisant des données qualitatives", décembre 2014 : http://hdl.handle.net/1866/11341