2 resultados para metabolic syndrome
em Centro Hospitalar do Porto
Resumo:
Growth-curves are an important tool for evaluating the anthropometric development in pediatrics. The different growth-curves available are based in different populations, what leads to different cut-offs. Pediatric obesity tracks into adulthood and is associated with increased cardiovascular risk. The accurate assessment of a child nutritional status using growth-curves can indicate individuals that are either obese or in risk of becoming obese, allowing an early intervention. Moreover, the association between the data obtained from growth-curves with specific metabolic risk factors further highlights the importance of these charts. This study aimed to evaluate the associations between body mass index z-score (BMIzsc), determined using the growth-curves from the Centre for Disease Control and Prevention (CDC) and from the World Health Organization (WHO), with cardiovascular risk factors, represented here by metabolic syndrome (MS) and insulin resistance (IR) related parameters. The study involved 246 obese adolescents (10-18 years, 122 females). MS was defined according to the International Diabetes Federation. IR was considered for HOMA-IR greater than 2.5.
Resumo:
BACKGROUND: Bilirubin can prevent lipid oxidation in vitro, but the association in vivo with oxidized low-density lipoprotein (Ox-LDL) levels has been poorly explored. Our aim is to the association of Ox-LDL with total bilirubin (TB) levels and with variables related with metabolic syndrome and inflammation, in young obese individuals. FINDINGS: 125 obese patients (13.4 years; 53.6% females) were studied. TB, lipid profile including Ox-LDL, markers of glucose metabolism, and levels of C-reactive protein (CRP) and adiponectin were determined. Anthropometric data was also collected. In all patients, Ox-LDL correlated positively with BMI, total cholesterol, LDLc, triglycerides (TG), CRP, glucose, insulin and HOMAIR; while inversely with TB and HDLc/Total cholesterol ratio (P < 0.05 for all). In multiple linear regression analysis, LDLc, TG, HDLc and TB levels were significantly associated with Ox-LDL (standardized Beta: 0.656, 0.293, -0.283, -0.164, respectively; P < 0.01 for all). After removing TG and HDLc from the analysis, HOMAIR was included in the regression model. In this new model, LDLc remained the best predictor of Ox-LDL levels (β = 0.665, P < 0.001), followed by TB (β = -0.202, P = 0.002) and HOMAIR (β = 0.163, P = 0.010). CONCLUSIONS: Lower bilirubin levels may contribute to increased LDL oxidation in obese children and adolescents, predisposing to increased cardiovascular risk.