5 resultados para waxy genes
em Brock University, Canada
Resumo:
The monoterpenoid indole alkaloids (MIAs) of Madagascar periwinkle (Catharanthus roseus) are known to be among the most important source of natural drugs used in various cancer chemotherapies. MIAs are derived by combining the iridoid secologanin with tryptamine to form the central precursor strictosidine that is then converted to most known MIAs, such as catharanthine and vindoline that dimerize to form anticancer vinblastine and vincristine. While their assembly is still poorly understood, the complex multistep pathways involved occur in several specialized cell types within leaves that are regulated by developmental and environmental cues. The organization of MIA pathways is also coupled to secretory mechanisms that allow the accumulation of catharanthine in the waxy leaf surface, separated from vindoline found within leaf cells. While the spatial separation of catharanthine and vindoline provides an explanation for the low levels of dimeric MIAs found in the plants, the secretion of catharanthine to the leaf surface is shown to be part of plant defense mechanisms against fungal infection and insect herbivores. The transcriptomic databases of Catharanthus roseus and various MIA producing plants are facilitating bioinformatic approaches to identify novel MIA biosynthetic genes. Virus-induced gene silencing (VIGS) is being used to screen these candidate genes for their involvement in iridoid biosynthesis pathway, especially in the identification of 7-deoxyloganic acid 7-hydroxylase (CrDL7H) shown by the accumulation of its substrate, 7-deoxyloganic acid and decreased level of secologanin along with catharanthine and vindoline. VIGS can also confirm the biochemical function of genes being identified, such as in the glucosylation of 7-deoxyloganetic acid by CrUGT8 shown by decreased level of secologanin and MIAs within silenced plants. Silencing of other iridoid biosynthetic genes, loganic acid O-methyltransferase (LAMT) and secologanin synthase (SLS) also confirm the metabolic route for iridoid biosynthesis in planta through 7-deoxyloganic acid, loganic acid, and loganin intermediates. This route is validated by high substrate specificity of CrUGT8 for 7-deoxyloganetic acid and CrDL7H for 7-deoxyloganic acid. Further localization studies of CrUGT8 and CrDL7H also show that these genes are preferentially expressed within Catharanthus leaves rather than in epidermal cells where the last two steps of secologanin biosynthesis occur.
Resumo:
Strain improvement of the insect pathogenic fungus Metarhizium anisopUae is necessary to increase its virulence towards agricultural pests and thus improve its commercial efficacy. Nevertheless, the release of genetically modified conidia in crop fields may negatively affect the ecosystem. Controlling conidiation is a potential means of limiting the release of engineered strains since conidia are the infective propagules and the means of dispersal. The purpose of this study was to research the colony development of M. anisopUae to identify potential targets for genetic manipulation to control conidiation. Following Agrobacterium tumefaciem insertional mutagenesis, phenotypic mutants were characterized using Y-shaped adaptor dependent extension PCR. Four of 1 8 colony development recombinants had T-DNA flanking sequences with high homology to genes encoding known signaling pathway proteins that regulate pathogenesis and/or asexual development in filamentous fungi. Conidial density counts and insect bioassays suggested that a Serine/Threonine protein kinase COTl homolog is not essential for conidiation or virulence. Furthermore, a choline kinase homolog is important for conidiation, but not virulence. Finally, the regulator of G protein signaling CAG8 and a NADPH oxidase NoxA homolog are necessary for conidiation and virulence. These genes are candidates for further investigation into the regulatory pathways controlling conidiation to yield insight into promising gene targets for biocontrol strain improvement.
Resumo:
Catharanthus roseus is the sole biological source of the medicinal compounds vinblastine and vincristine. These chemotherapeutic compounds are produced in the aerial organs of the plant, however they accumulate in small amounts constituting only about 0.0002% of the fresh weight of the leaf. Their limited biological supply and high economical value makes its biosynthesis important to study. Vinblastine and vincristine are dimeric monoterpene indole alkaloids, which consists of two monomers vindoline and catharanthine. The monoterpene indole alkaloids (MIA's) contain a monoterpene moiety which is derived from the iridoid secologanin and an indole moiety tryptamine derived from the amino acid tryptophan. The biosynthesis of the monoterpene indole alkaloids has been localized to at least three cell types namely, the epidermis, the laticifer and the internal phloem assisted parenchyma. Carborundum abrasion (CA) technique was developed to selectively harvest epidermis enriched plant material. This technique can be used to harvest metabolites, protein or RNA. Sequencing of an expressed sequence tagged (EST) library from epidermis enriched mRNA demonstrated that this cell type is active in synthesizing a variety of secondary metabolites namely, flavonoids, lipids, triterpenes and monoterpene indole alkaloids. Virtually all of the known genes involved in monterpene indole alkaloid biosynthesis were sequenced from this library.This EST library is a source for many candidate genes involved in MIA biosynthesis. A contig derived from 12 EST's had high similarity (E'^') to a salicylic acid methyltransferase. Cloning and functional characterization of this gene revealed that it was the carboxyl methyltransferase imethyltransferase (LAMT). In planta characterization of LAMT revealed that it has a 10- fold enrichment in the leaf epidermis as compared to the whole leaf specific activity. Characterization of the recombinant enzyme revealed that vLAMT has a narrow substate specificity as it only accepts loganic acid (100%) and secologanic acid (10%) as substrates. rLAMT has a high Km value for its substrate loganic acid (14.76 mM) and shows strong product inhibition for loganin (Kj 215 |iM). The strong product inhibition and low affinity for its substrate may suggest why the iridoid moiety is the limiting factor in monoterpene indole alkaloid biosynthesis. Metabolite profiling of C. roseus organs shows that secologanin accumulates within these organs and constitutues 0.07- 0.45% of the fresh weight; however loganin does not accumulate within these organs suggesting that the product inhibition of loganin with LAMT is not physiologically relevant. The limiting factor to iridoid and MIA biosynthesis seems to be related to the spatial separation of secologanin and the MIA pathway, although secologanin is synthesized in the epidermis, only 2-5% of the total secologanin is found in the epidermis while the remaining secologanin is found within the leaf body inaccessable to alkaloid biosynthesis. These studies emphasize the biochemical specialization of the epidermis for the production of secondary metabolites. The epidermal cells synthesize metabolites that are sequestered within the plant and metabolites that are secreted to the leaf surface. The secreted metabolites comprise the epidermome, a layer separating the plant from its environment.
Resumo:
The regenerating urodele limb is a useful model system in which to study, in vivo, the controls of cell proliferation and differentiation. Techniques are available which enable one to experimentally manipulate mitogenic influences upon the blastema, as well the morphogenesis of the regenerating 11mb. Although classical regeneration studies have generated a wealth of knowledge concerning tissue interactions, little 1s known about the process at the level of gene expression. The aim of this project was to clone potentially developmentally regulated genes from a newt genomic library for use in future studies of gene expression during limb regeneration. We decided to clone the cytoskeletal actin gene for the following reasons: 1. its expression reflects the proliferative and differentiatlve states of cells in other systems 2. the high copy number of cytoplasmic actin pseudogenes in other vertebrates and the high degree of evolutionary sequence conservation among actin genes increased the chance of cloning one of the newt cytoplasmic actin genes. 3. Preliminary experiments indicated that a newt actin could probably be identified using an available chick ~-actln gene for a molecular probe. Two independent recombinant phage clones, containing actin homologous inserts, were isolated from a newt genomic library by hybridization with the chick actin probe. Restriction mapping identified actin homologous sequences within the newt DNA inserts which were subcloned into the plasmid pTZ19R. The recombinant plasmids were transformed into the Escherichia coli strain, DHsa. Detailed restriction maps were produced of the 5.7Kb and 3.1Kb newt DNA inserts in the plasmids, designated pTNAl and pTNA2. The short «1.3 Kb) length of the actin homologous sequence in pTNA2 indicated that it was possibly a reverse transcript pseudogene. Problems associated with molecular cloning of DNA sequences from N. viridescens are discussed with respect to the large genome size and abundant highly repetitive DNA sequences.
Resumo:
Arabidopsis is a model plant used to study disease resistance; Solanum tuberosum or potato is a crop species. Both plants possess inducible defense mechanisms that are deployed upon recognition of pathogen invasion. Transcriptional reprogramming is crucial to the activation of defense responses. The Pathogenesis-Related (PR) genes are activated in these defense programs. Expression of Arabidopsis PR-l and potato PR-10a serve as markers for the deployment of defense responses in these plants. PR-l expression indicates induction of systemic acquired resistance (SAR). Activation of SAR requires accumulation of salicylic acid (SA), in addition to the interaction of the non-expressor of pathogenesis-related genes I (NPRI), with the TGA transcription factors. The PR-10a is activated in response to pathogen invasion, wounding and elicitor treatment. PR-10a induction requires recruitment of the Whirly I (Whyl) activator to the promoter. This locus is also negatively regulated by the silencer element binding factor (SEBF). We established that both the PR-l and PR-10a are occupied by repressors under non-inducing conditions. TGA2 was found to be a constitutive resident and repressor of PR-l, which mediates repression by forming an oligomeric complex on the promoter. The DNA-binding activity of this oligomer required the TGA2 N-terminus (NT). Under resting conditions we determined that the PR-10a is bound by a repressosome containing SEBF and curiously the activator Pto interacting protein 4 (Pti4). In the context of this repressosome, SEBF is responsible for PR-10a binding, yet rWe also showed that PR-l and PR-10a are activated by different means. In PR-l activation the NPRI NT domain alleviates TGA2-mediated repression by interacting with the TGA2 NT. TGA2 remains at the PR-l but adopts a dimeric conformation and forms an enhanceosome with NPRl. In contrast, the PR-10a is activated by evicting the repressosome and recruiting Why! to the promoter. These results advance our understanding of the mechanisms regulating PR-l and PR-10a expression under resting and inducing conditions. This study also revealed that the means of regulation for related genes can differ greatly between model and crop s