4 resultados para velocity distributions
em Brock University, Canada
Hydraulic and fluvial geomorphological models for a bedrock channel reach of the Twenty Mile Creek /
Resumo:
Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
Cardiovascular disease is a leading cause of mortality in the spinal cord injured (SCI) population. Reduced arterial compliance is a cardiovascular risk factor and whole body vibration (WBV) has be en shown to improve arterial compliance in able-bodied individuals. The study investigated the effect of an acute session ofWBV on arterial compliance as measured by pulse wave velocity (PWV). On separate days, arm, leg and aortic PWV were measured pre- and post- a 45 minute session of passive stance (PS) and WBV. The WBV was intermittent with a set frequency of 45Hz and amplitude of O.6mm. There was no condition by time effect when comparing PWV after WBV and PS. Following WBV, aortic (928.6±127.7 vs. 901.1±96.6cm/sec), leg (1035.2±113.8 vs.l099.8±114.2cm/sec) and arm PWV (1118.9±119.8 vs. 1181.1±124.4cm/s) did not change. As such, WBV did not reduce arterial compliance, however future research with protocol modifications is recommended.
Resumo:
This document could not have been completed without the hard work of a number of individuals. First and foremost, my supervisor, Dr. David Gabriel deserves the utmost recognition for the immense effort and time spent guiding the production of this document through the various stages of completion. Also, aiding in the data collection, technical support, and general thought processing were Lab Technician Greig Inglis and fellow members of the Electromyographic Kinesiology Laboratory Jon Howard, Sean Lenhardt, Lara Robbins, and Corrine Davies-Schinkel. The input of Drs. Ted Clancy, Phil Sullivan and external examiner Dr. Anita Christie, all members ofthe assessment committee, was incredibly important and vital to the completion of this work. Their expertise provided a strong source of knowledge and went to ensure that this project was completed at exemplary level. There were a number of other individuals who were an immense help in getting this project off the ground and completed. The donation of their time and efforts was very generous and much needed in order to fulfill the requirements needed for completion of this study. Finally, I cannot exclude the contributions of my family throughout this project especially that of my parents whose support never wavers.