6 resultados para variational solutions

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization of wave functions in quantum Monte Carlo is a difficult task because the statistical uncertainty inherent to the technique makes the absolute determination of the global minimum difficult. To optimize these wave functions we generate a large number of possible minima using many independently generated Monte Carlo ensembles and perform a conjugate gradient optimization. Then we construct histograms of the resulting nominally optimal parameter sets and "filter" them to identify which parameter sets "go together" to generate a local minimum. We follow with correlated-sampling verification runs to find the global minimum. We illustrate this technique for variance and variational energy optimization for a variety of wave functions for small systellls. For such optimized wave functions we calculate the variational energy and variance as well as various non-differential properties. The optimizations are either on par with or superior to determinations in the literature. Furthermore, we show that this technique is sufficiently robust that for molecules one may determine the optimal geometry at tIle same time as one optimizes the variational energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work contains the results of a series of reduction studies on polyhalogenated aromatic compounds and related ethers using alkali metals in liquid ammonia. In general, polychlorobenzenes were reduced to t he parent aromatic hydrocarbon or to 1 ,4-cyc1ohexadiene, and dipheny1ethers were cleaved to the aroma tic hydrocarbon and a phenol. Chlorinated dipheny1ethers were r eductive1y dechlorinated in the process. For example, 4-chlorodipheny1- ether gave benzene and phenol. Pentach1orobenzene and certain tetrachlorobenzenes disproportionated to a fair degree during the reduction process if no added proton source was present. The disproportionation was attributed to a build-up of amide ion. Addition of ethanol completely suppressed the formation of any disproportionation products. In the reductions of certain dipheny1ethers , the reduction of one or both of the dipheny1ether rings occurred, along with the normal cleavage. This was more prevalent when lithium was the metal used . As a Sidelight, certain chloropheno1s were readily dechlorinated. In light of these results, the reductive detoxification of the chlorinated dibenzo-1,4-dioxins seems possible with alkali metals in l iquid ammonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to treating large Z systems by quantum Monte Carlo has been developed. It naturally leads to notion of the 'valence energy'. Possibilities of the new approach has been explored by optimizing the wave function for CuH and Cu and computing dissociation energy and dipole moment of CuH using variational Monte Carlo. The dissociation energy obtained is about 40% smaller than the experimental value; the method is comparable with SCF and simple pseudopotential calculations. The dipole moment differs from the best theoretical estimate by about 50% what is again comparable with other methods (Complete Active Space SCF and pseudopotential methods).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the extended Tanh method to obtain some exact solutions of KdV-Burgers equation. The principle of the Tanh method has been explained and then apply to the nonlinear KdV- Burgers evolution equation. A finnite power series in tanh is considered as an ansatz and the symbolic computational system is used to obtain solution of that nonlinear evolution equation. The obtained solutions are all travelling wave solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.