13 resultados para transport cycling
em Brock University, Canada
Resumo:
Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.
Resumo:
One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.
Resumo:
The rate of decrease in mean sediment size and weight per square metre along a 54 km reach of the Credit River was found to depend on variations in the channel geometry. The distribution of a specific sediment size consist of: (1) a transport zone; (2) an accumulation zone; and (3) a depletion zone. These zones shift downstream in response to downcurrent decreases in stream competence. Along a .285 km man-made pond, within the Credit River study area, the sediment is also characterized by downstream shifting accumulation zones for each finer clast size. The discharge required to initiate movement of 8 cm and 6 cm blocks in Cazenovia Creek is closely approximated by Baker and Ritter's equation. Incipient motion of blocks in Twenty Mile Creek is best predicted by Yalin's relation which is more efficient in deeper flows. The transport distance of blocks in both streams depends on channel roughness and geometry. Natural abrasion and distribution of clasts may depend on the size of the surrounding sediment and variations in flow competence. The cumulative percent weight loss with distance of laboratory abraded dolostone is defined by a power function. The decrease in weight of dolostone follows a negative exponential. In the abrasion mill, chipping causes the high initial weight loss of dolostone; crushing and grinding produce most of the subsequent weight loss. Clast size was found to have little effect on the abrasion of dolostone within the diameter range considered. Increasing the speed of the mill increased the initial amount of weight loss but decreased the rate of abrasion. The abrasion mill was found to produce more weight loss than stream action. The maximum percent weight loss determined from laboratory and field abrasion data is approximately 40 percent of the weight loss observed along the Credit River. Selective sorting of sediment explains the remaining percentage, not accounted for by abrasion.
Resumo:
The addition of L-Glutamate (L-GLU) and L-Hethionine ~ulfoximine (L-HSO) to mechanically isolated. photosynthetically competent, Asparagus sprengeri mesophyll cells ~u~pended in 1mM CaS04 cau~ed an immediate transient alkalinization of the cell su~pension medium in both the light and dark. The alkalinization response was specific and stereospecific as none of the L-isomers of the other 19 protein amino acids tested or D-GLU gave this response. Uptake of 14C-L-GLU was stimulated by the light. The addition of non-radioactive L-GLU. or L-GLU analogs together with 14C-L-GLU showed that only L-GLU and L-HSO stimulated alkalinization whilst inhibiting the uptake of 14C-L-GLU. Both the L-GLU dependent alkalinization and the upt~ke of 14C-L-GLU were stimulated when the external pH was decreased from 6.5 to 5.5. Increasing external K+ concentrations inhibited the uptake of 14C-L-GLU. Fusicoccin (FC) stimulated uptake. The L-GLU dependent alkalinization re~ponse exhibited monophasic saturation kinetics while the uptake of 14C-L-GLU exhibited biphasic saturation kinetics. In addition to a saturable component. the uptake kinetics also showed a linear component of uptake. Addition of L-GLU and L-MSO caused internal acidification of the cell as measured by a change in the distribution of 14C-DMO. There was no change in K+ efflux when L-GLU was added. A H+ to L-GLUinflux stoichiometry of 3:1 wa~ mea~ured at an external I.-GLU concentration of O.5mM and increased with increasing external 13 L-QLU concentration. Metabolism of L-GLU was detected manometrlcally by observing an increase in COa evolution upon the addition of L-QLU and by detection of i*C02 evolution upon the addition of »*C-L-GLU. »*C02 evolution was higher in the dark than in the light. The data are consistent with the operation of a H+/L-QLO cotransport system. The data also show that attempts to quantify the stoichlometry of the process were complicated by the metabolism of L-GLU.
Resumo:
The number of P700 (the reaction centre of Photosystem I) converted to P700+, in winter rye, was determined by measuring the absorbance change at 820nm . It was found, with a single turnover flash, that thylakoids isolated from cold grown plants have a 50% greater number of P700 oxidized than thylakoids isolated from warm grown plants. Incubation of thylakoids in the dark at 35 C did not change the number of P700 oxidized. The conversion of P700 to P700+ with a single flash can be compared to a steady state rate of electron transport using a Clark electrode. The results for P700 oxidation using the absorbance change at 820 nm measure effects within the PSI complex whereas the results obtained from a Clark electrode measures steady state electron transport between the cytochrome blf complex and the PSI complex. In contrast to the results for P700 oxidation it was shown, using a Clark electrode, that both thylakoids from cold grown plants and thylakoids incubated at in the dark 35 C exhibited 50% higher rates of electron transport than thylakoids from warm grown plants. The correlation between the higher rate of steady state PSI electron transport observed in thylakoids isolated from cold grown winter rye and number of active PSI reaction centres localizes the site of the increase to the PSI reaction centre. In contrast the lack of correlation after incubation at 35 C indicates the increase in the rate of light saturated electron transport in thylakoids isolated from cold grown plants and thylakoids incubated in the dark at 35 C occur by different mechanisms.
Resumo:
The effects of a diurnal sine-wave temperature cycle (250 +- 5° C) on the wa terI-e etc r o1 yt est a t us 0 f gol df1' Sh , Carassius auratus, was assessed through determination of Na+, K+, Mg2+, Ca2+, Cl- and water content in plasma, Red blood cells and muscle tissue. Animals were also acclimated to o 0 0 static temperatures (20 C, 25 c, 30 C) corresponding to the high, low and mid-ooint temperatures of the cycle. All groups were sampled at 03:00, 09:00, 15:00 and 21:00 hr. Hemoglobin content and packed cell volume, as well as electrolyte and 'water levels were determined for each animal and red cell ion concentrations and ion : hemoglobin ratios estimated. Cycled animals were distinct from those at constant temperatures in several respects. Hematological parameters were elevated above those of animals at constant temperature and were, on a diurnal basis, more stable. Red blood cell electrolyte levels varied in an adaptively appropriate fashion to cycle temperatures. This was not the case in the constant temperature groups_ Under the cycling regime, plasma ion levels were more diurnally stable than those of constant temperature fish. Although muscle parameters in cycled fish exhibited more fluctuation than was observed in plasma, these also tended to be relatively more stable than was the caseErythrocytic data are discussed in terms of their effects on hemoglobin-oxygen affinity while plasma and muscle observations were considered from the standpoint of overall water-electrolyte balance. In general, cycled fish appeared to be capable of stabilizing overall body fluid composition, while simultaneously effecting adaptively-appropriate modifications in the erythrocytic ionic microenvironment of hemoglobin. The sometimes marked diurnal variability of water-electrolyte status in animals held at constant temperature as opposed to the conservation of cycled fish suggests that this species is, in some fashion, programmed for regulation in a thermally-fluctuating environment. If this interpretation is valid and a phenomenon of general occurrence, some earlier studies involving constant acclimation of eurythermal species normally occupying habitats which vary in temperature on a daily basis may require reconsideration. at constant temperature.
Resumo:
Hematological status in rainbow trout, Salmo gairdneri, was examined in relation to eight combinations of three environmental fa ctors; temperature (5°, 20°C), oxygen availability «35%, >70% saturation) and photoperiod (16L:8D, 8L:16D) and evaluated by 3-factor analysis of variance. Hemog l obin and hematocrit , indicators of oxygenc arrying capacity increased significantly at the higher temperature, following exposure to hypoxia and in relation to reduced light period. Significant variations in mean corpuscular hemoglobin concentration were not detected. The effects of temperature and oxygen availability were more pronounced than that of photoperiod which was generally masked. Although oxygen availability and photoperiod did not interact with temperature, the interaction of the former fac tors was significant. Elec trophoresis revealed twelve hemoglobin isomorphs. Relative concentration changes were found in re lation to the factors c onsidered with temperature>hypoxia>photoperiod. Howeve r , in terms of absolute concentration, effects were hypoxia>temperature>photoperiod. Photoperiod effects were again masked by temperature and (or) hypoxia. Red cell +2 l eve ls of [CI ] and [Mg ], critical elements in the hemoglobin-oxygen affinity regulating system, were also significantly altered. Red cell CI +2 was influenced only by temperature ; Mg by temper ature and oxygen. No photoperiod influence on either ions was observed. Under nominal 'summer' conditions, these changes point to the likelihood of increases in oxygen-c arrying c apac ity coupled with low Hb-02 affinity adjustments which would be expected to increase oxygen delivery rates to their more rapidly metabolising tissues.
Resumo:
:ofiedian lethal temperatures ( LT50' s ) were determined for rainbow trout, Salmo gairdnerii, acclimated for a minimum of 21 days at 5 c onstant temperatures between 4 and 20 0 C. and 2 diel temperature fluctuations ( sinewave curves of amplitudes ± 4 and ± 7 0 C. about a mean temperature of 12 0 C. ) . Twenty-four-, 48-, and 96-hour LT50 estimates were c alculated f ollowing standard flow-through aquatic bioassay techniques and probi t transformation of mortality data. The phenomenon of delayed thermal mortality was also investigated. Shifts in upper incipient lethal temperature occurred as a result of previous thermal conditioning. It was shown that increases in constant acclimation temperature result in proportional l inear increases in thermal tolerances. The increase i n estimated 96-hour LT50's was approximately 0.13 0 c. X 1 0 C:1 between 8 and 20 0 C. The effect of acclimation to both cyclic temperature regimes was an increase in LT50 to values between the mean and maximum constant equivalent daily temperatures of the cycles. Twenty-four-, 48-, and 96-hour LT50 estimates of both cycles corresponded approximately to the LT50 values of the 16 0 C. c onstant temperature equivalent . This increase i n thermal tolerance was further demonstrated by the delayed thermal mortality experiments . Cycle amplitudes appeared to i nfluence thermal resistance through alterations in initi al mortality since mortality patterns characteristic of base temperature acclimations re-appeared after approximately 68 hours exposure to test temperatures for the 12 + 4 0 C. group, whereas mortality patterns stabilized and remained constant for a period greater than 192 hours with the larger therma l cycle ( 12 + 7 0 C. ). NO s ignificant corre lations between s pecimen weight and time-to-death was apparent. Data are discussed in relation to the establishment of thermal criteria for important commercial and sport fishes , such as the salmonids , as is the question whether previously reported values on lethal temperature s may have been under estimated.
Resumo:
Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.
Resumo:
Single crystals of (Bal - xKx)Fe2As2 were prepared using the Sn flux method. Two heating methods were used to prepare the single crystals: the slow heating and rapid heating methods. It was found that the single crystals grown using the slow heating method were not superconducting due to a significant loss of potassium. When the rapid heating method was used, the single crystals were observed to be superconducting with the desired potassium concentration. The energy dispersive X-ray spectroscopy analysis indicated the presence of multiple phases in the single crystals. Using single crystal X-ray diffraction, the crystal structure of the single crystals was found to be 14/mmm tetragonal at room temperature. The magnetic measurements on the single crystals indicated the presence of multiple phases and magnetic impurities.
Resumo:
Central Governor Model (CGM) suggests that perturbations in the rate of heat storage (AS) are centrally integrated to regulate exercise intensity in a feed-forward fashion to prevent excessive thermal strain. We directly tested the CGM by manipulating ambient temperature (Tam) at 20-minute intervals from 20°C to 35°C, and returning to 20°C, while cycling at a set rate of perceived exertion (RPE). The synchronicity of power output (PO) with changes in HS and Tam were quantified using Auto-Regressive Integrated Moving Averages analysis. PO fluctuated irregularly but was not significantly correlated to changes in thermo physiological status. Repeated measures indicated no changes in lactate accumulation. In conclusion, real time dynamic sensation of Tam and integration of HS does not directly influence voluntary pacing strategies during sub-maximal cycling at a constant RPE while non-significant changes in blood lactate suggest an absence of peripheral fatigue.
Resumo:
The article focuses on assessing the stress levels of animals when transported and handled. The paper was presented at a symposium titled Effects of Stress in Farm Animals at the American Society of Animal Science 87th annual meeting, July 1995.
Resumo:
The article researches "electric stunning, carbon dioxide stunning, pig behaviour during handling, return to sensibility, facility design, truck loading, density and transport stress".