8 resultados para thermal properties
em Brock University, Canada
Resumo:
By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dynamical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and Pt). We have also investigated, within the quasiharmonic approximation, some other thermal properties of these metals which depend on the phonon density of states, such as the temperature dependence of lattice constant, coefficient of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Griineisen parameter and Debye temperature. The computed results are compared with the experimental findings wherever possible. The comparison shows a generally good agreement between the theoretical values and experimental data for all properties except the discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further, we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion curves which is in good agreement with experimental data.
Resumo:
Lead chromium oxide is a photoconductive dielectric material tha t has great potential of being used as a room temperature photodetector. In this research, we made ceramic pellets of this compound as well as potassium doped compound Pb2-xKxCr05, where x=O, 0.05, 0.125. We also investigate the properties of the lanthanum doped sample whose chemical formula is Pb1.85Lao.15Cr05' The electronic, magnetic and thermal properties of these materials have been studied. Magnetization measurements of the Pb2Cr05 sample indicate a transition at about 310 K, while for the lanthanum doped sample the transition temperature is at about 295 K indicating a paramagnetic behavior. However, the potassium doped samples are showing the transition from paramagnetic state to diamagnetic state at different temperatures for different amounts of potassium atoms present in the sample. We have studied resistivity as a function of temperature in different gas environments from 300 K to 900 K. The resistivity measurement of the parent sample indicates a conducting to insulating transition at about 300 K and upon increasing the temperature further, above 450 K the sample becomes an ionic conductor. As temperature increases a decrease in resistance is observed in the lanthanum/potassium doped samples. Using Differential Scanning Calorimetry experiment an endothermic peak is observed for the Pb2Cr05 and lanthanum/potassium doped samples at about 285 K.
Resumo:
We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.
Resumo:
We have calculated the equation of state and the various thermodynamic properties of monatomic fcc crystals by minimizing the Helmholtz free energy derived in the high temperature limit for the quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, anharmonic terms of the perturbation theory, PT. The total energy in each case is obtained by adding the static energy. The calculation of the thermal properties was carried out for a nearest-neighbour central-force model of the fcc lattice by means of the appropriate thermodynamic relations. We have calculated the lattice constant, the thermal expansion, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the isothermal and adiabatic bulk moduli, and the Griineisen parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential and modified Morse potential were each used to represent the atomic interaction for the three fcc materials. For most of the calculated thermodynamic properties from the QH theory, the results for Kr and Xe with the modified Morse potential show an improvement over the results for the Morse potential when compared with the experimental data. However, the results of the 'A 2 equation of state with the modified Morse potential are in good agreement with experiment only in the case of the specific heat at constant volume and at constant pressure. For Au we have calculated the lattice contribution from the QH and 'A 2 PT and the electronic contribution to the thermal properties. The electronic contribution was taken into account by using the free electron model. The results of the thermodynamic properties calculated with the modified Morse potential were similar to those obtained with the Morse potential. U sing the minimized equation of state we also calculated the Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor (DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was obtained for the above two potentials and Lennard-Jones potential. The L-J potential gives the best agreement with experiment for Kr. No experimental data exists for Xe. At low temperature the calculated DWF results for Pb, AI, and eu show a good agreement with experimental values, but at high temperature the experimental DWF results increase very rapidly. For Ag the computed values were below the expected results at all temperatures. The DWF results of the modified Morse potential for Pb, AI, eu and Ag were slightly better than those of the Morse potential. In the case of Au the calculated values were in poor agreement with experimental results. We have calculated the quasiharmonic phonon dispersion curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental results of the frequencies agree quite well for all the materials except for Au where the longitudinal modes show serious discrepancies with the experimental results. In addition, the two lowest-order anharmonic contributions to the phonon frequency were derived using the Green's function method. The A 2 phonon dispersion curves have been calculated only for eu, and the results were similar to those of the QH dispersion curves. Finally, an expression for the Griineisen parameter "( has been derived from the anharmonic frequencies, and calculated for these materials. The "( results are comparable with those obtained from the thermodynamic definition.
Resumo:
A new series of nano-sized Ce1-xEuxCrO3 (x = 0.0 to 1.0) with an average particle size of 50 - 80 nm were synthesized using a solution combustion method. Nano-powders Ce1-xEuxCrO3 with the canted antiferromagnetic property exhibited interesting magnetic behaviours including the reversal magnetization and the exchange bias effect. The effect of europium doping as the ion with the smaller radius size and different electron con figuration on structural, magnetic and thermal properties of Ce1-xEuxCrO3 were investigated using various experimental techniques, i.e. DC/AC magnetic susceptibility, heat capacity, thermal expansion, Raman scattering, X-ray photoemission spectroscopy, transmission/scanning electron microscopy, X-ray powder diffraction and neutron scattering. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples confirmed the existence of the spin disorder magnetic phase in Ce1-xEuxCrO3 compounds. The exchange bias phenomenon, which is assigned to the exchange coupling between glassy-like shell and canted antiferromagnetic core, showed the opposite sign in CeCrO3 and EuCrO3 at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. The energy level excitation of samples were examined by an inelastic neutron scattering which was in good agreement with the heat capacity data. Neutron scattering analysis of EuCrO3 was challenging due to the large neutron absorption cross-section of europium. All diffraction patterns of Ce1-xEuxCrO3 showed the magnetic peak attributed to the antiferromagnetic Cr3+ spins while none of the diffraction patterns could detect the magnetic ordering of the rare-earth ions in these samples.
Resumo:
We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
The Beckman Helium Discharge Detector has been found to be sensitive to the fixed gases oxygen, nitrogen, and hydrogen at detection levels 10-100 times more sensitive than possible with a Bow-Mac Thermal Conductivity Detector. Detection levels o~ approximately 1.9 E-4 ~ v/v oxygen, 3.1 E-4 ~ v/v nitrogen, and 3.0 E-3 ~ v/v hydrogen are estimated. Response of the Helium Discharge Detector was not linear, but is useable for quantitation over limited ranges of concentration using suitably prepared working standards. Cleanliness of the detector discharge electrodes and purity of the helium carrier and discharge gas were found to be critical to the operation of the detector. Higher sensitivities of the Helium Discharge Detector may be possible by the design and installation of a sensitive, solid-state electrometer.